Portable amperometric method for selective determination of caffeine in samples with the presence of interfering electroactive chemical species

Author(s):  
David L. O. Ramos ◽  
Michelle M. A. C. Ribeiro ◽  
Rodrigo A. A. Munoz ◽  
Eduardo M. Richter
Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 324
Author(s):  
Diogo L. Rocha ◽  
Vivian Maringolo ◽  
Alberto N. Araújo ◽  
Célia M. P. G. Amorim ◽  
Maria da Conceição B. S. M. Montenegro

The determination of metal ions is important for nutritional and toxicological assessment. Atomic spectrometric techniques are highly efficient for the determination of these species, but the high costs of acquisition and maintenance hinder the application of these techniques. Inexpensive alternatives for metallic element determination are based on dedicated biosensors. These devices mimic biological systems and convert biochemical processes into physical outputs and can be used for the sensitive and selective determination of chemical species such as cations. In this work, an overview of the proposed biosensors for metal ions determination was carried out considering the last 15 years of publications. Statistical data on the applications, response mechanisms, instrumentation designs, applications of nanomaterials, and multielement analysis are herein discussed.


1989 ◽  
Vol 54 (10) ◽  
pp. 2667-2673 ◽  
Author(s):  
Vojtěch Steiner ◽  
Pavel Engst ◽  
Zdeněk Zelinger ◽  
Milan Horák

The optoacoustic analyzer with a tunable CO2 laser source employed in the present work permits a selective determination of ethylene in trace concentrations higher than 5 ppb (=detection limit for the 10P(14) emission line of the CO2 laser, ν = 949.5 cm-1) and of vinylchloride higher than 42 ppb (= detection limit for the 10P(22) CO2 laser line, ν= 942.4 cm-1). this method covers for both compounds the concentration range corresponding to the hygienic standard. It can be also used for the determination of styrene vapour with concentrations higher than 1.5 ppm.


2010 ◽  
Vol 75 (5) ◽  
pp. 563-575 ◽  
Author(s):  
Moslem Mohammadi ◽  
Mehdi Khodadadian ◽  
Mohammad K. Rofouei

A plasticized poly(vinyl chloride) membrane electrode based on 4-[(5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl]benzene-1,3-diol (L) for highly selective determination of palladium(II) (in PdCl42– form) is developed. The electrode showed a good Nernstian response (29.6 ± 0.4 mV per decade) over a wide concentration range (3.1 × 10–7 to 1.0 × 10–2 mol l–1). The limit of detection was 1.5 × 10–7 mol l–1. The electrode has a response time of about 20 s, and it can be used for at least 2 months without observing any considerable deviation from Nernstian response. The proposed electrode could be used in the pH range of 2.5–5.5. The practical utility of the electrode has been demonstrated by its use for the estimation of palladium content in aqueous samples.


Author(s):  
John Ross ◽  
Igor Schreiber ◽  
Marcel O. Vlad

In a chemical system with many chemical species several questions can be asked: what species react with other species: in what temporal order: and with what results? These questions have been asked for over one hundred years about simple and complex chemical systems, and the answers constitute the macroscopic reaction mechanism. In Determination of Complex Reaction Mechanisms authors John Ross, Igor Schreiber, and Marcel Vlad present several systematic approaches for obtaining information on the causal connectivity of chemical species, on correlations of chemical species, on the reaction pathway, and on the reaction mechanism. Basic pulse theory is demonstrated and tested in an experiment on glycolysis. In a second approach, measurements on time series of concentrations are used to construct correlation functions and a theory is developed which shows that from these functions information may be inferred on the reaction pathway, the reaction mechanism, and the centers of control in that mechanism. A third approach is based on application of genetic algorithm methods to the study of the evolutionary development of a reaction mechanism, to the attainment given goals in a mechanism, and to the determination of a reaction mechanism and rate coefficients by comparison with experiment. Responses of non-linear systems to pulses or other perturbations are analyzed, and mechanisms of oscillatory reactions are presented in detail. The concluding chapters give an introduction to bioinformatics and statistical methods for determining reaction mechanisms.


Sign in / Sign up

Export Citation Format

Share Document