scholarly journals On-Surface Synthesis of sp-Carbon Nanostructures

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 137
Author(s):  
Lina Shang ◽  
Faming Kang ◽  
Wenze Gao ◽  
Zheng Zhou ◽  
Wei Xu

The on-surface synthesis of carbon nanostructures has attracted tremendous attention owing to their unique properties and numerous applications in various fields. With the extensive development of scanning tunneling microscope (STM) and noncontact atomic force microscope (nc-AFM), the on-surface fabricated nanostructures so far can be characterized on atomic and even single-bond level. Therefore, various novel low-dimensional carbon nanostructures, challenging to traditional solution chemistry, have been widely studied on surfaces, such as polycyclic aromatic hydrocarbons, graphene nanoribbons, nanoporous graphene, and graphyne/graphdiyne-like nanostructures. In particular, nanostructures containing sp-hybridized carbons are of great advantage for their structural linearity and small steric demands as well as intriguing electronic and mechanical properties. Herein, the recent developments of low-dimensional sp-carbon nanostructures fabricated on surfaces will be summarized and discussed.

Author(s):  
Jean-Paul Revel

The last few years have been marked by a series of remarkable developments in microscopy. Perhaps the most amazing of these is the growth of microscopies which use devices where the place of the lens has been taken by probes, which record information about the sample and display it in a spatial from the point of view of the context. From the point of view of the biologist one of the most promising of these microscopies without lenses is the scanned force microscope, aka atomic force microscope.This instrument was invented by Binnig, Quate and Gerber and is a close relative of the scanning tunneling microscope. Today's AFMs consist of a cantilever which bears a sharp point at its end. Often this is a silicon nitride pyramid, but there are many variations, the object of which is to make the tip sharper. A laser beam is directed at the back of the cantilever and is reflected into a split, or quadrant photodiode.


2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


2021 ◽  
pp. 1-6
Author(s):  
Rami Ahmad El-Nabulsi

A generalized nonlocal uncertainty relation is constructed based on the notion of quantum acceleratum operator obtained in the framework of nonlocal-in-time kinetic energy approach for the case of reversible motion. The new uncertainty relation modified all quantum Hamiltonians and predicts nonlocal corrections to various phenomena at low-dimensional and nanoscales. We evaluate analytically and numerically nonlocal corrections for various quantum phenomena, mainly the Landau levels, the periodic structures, and the quantum box, and we constrain our results with the scanning tunneling microscope experiment. Several features were discussed accordingly.


Sign in / Sign up

Export Citation Format

Share Document