conjugation effect
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6534
Author(s):  
Elena L. Gerasimova ◽  
Elena R. Gazizullina ◽  
Maria V. Borisova ◽  
Dinara I. Igdisanova ◽  
Egor A. Nikiforov ◽  
...  

The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2H-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2H-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2H-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2H-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (104 mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds.


2021 ◽  
Vol 147 ◽  
pp. 110333
Author(s):  
Siyi Tang ◽  
Xinhe Ye ◽  
Yue Gao ◽  
Ruopei Xu ◽  
Longbo Luo ◽  
...  

2021 ◽  
Vol 230 ◽  
pp. 117709
Author(s):  
Suqin Huang ◽  
Changqing Ye ◽  
Shuoran Chen ◽  
Zuoqin Liang ◽  
Yuyang Zhou ◽  
...  

Author(s):  
Xiaohui Li ◽  
Chenxi Zhang ◽  
yamin wang ◽  
Mingqi An ◽  
Zhipeng Sun

The hydrazone organic compounds with strong conjugation effect have superior characteristics such as high nonlinear optical sensitivity, short response time, unique electronic spectrum and photothermal stability. The conjugated structure of...


2021 ◽  
Vol 45 (1) ◽  
pp. 23-27
Author(s):  
Murat Tonga

The aggregation-induced emission properties of extended viologens, particularly the effect of π-conjugation, were methodically studied.


2019 ◽  
Vol 10 (21) ◽  
pp. 5556-5567 ◽  
Author(s):  
Feifei Gao ◽  
Ruiming Du ◽  
Chunmiao Han ◽  
Jing Zhang ◽  
Ying Wei ◽  
...  

Highly efficient sky-blue TADF donor–acceptor–donor molecules were demonstrated, in which 5,10-diphenyl-5,10-dihydrophosphanthrene oxide (DPDPO2A) with the feature of homoconjugation was used as the acceptor to bridge four carbazolyl or 3,6-di-t-butyl-carbazolyl groups.


Sign in / Sign up

Export Citation Format

Share Document