scholarly journals Spermine and Spermidine Detection through Restricted Intramolecular Rotations in a Tetraphenylethylene Derivative

Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Mariana Barros ◽  
Samuel Ceballos ◽  
Pau Arroyo ◽  
José Antonio Sáez ◽  
Margarita Parra ◽  
...  

Biogenic polyamines, especially spermine and spermidine, are associated with cell growth and development. These amines can be found at high concentrations in the tumor cells, tissues, and urine of cancer patients. In contrast, spermidine levels drop with age, and a possible connection between low endogenous spermidine concentrations and age-related deterioration has been suggested. Thus, the quantification of these amines in body fluids like urine could be used in the diagnosis of different pathological situations. Here a new fluorescent molecular probe based on a tetraphenylethylene derivative is reported. This probe is able to selectively detect these amines through the enhancement of the fluorescence emission of the resulting complex. This fluorescence enhancement may be related to restricted intramolecular rotations of TPE phenyl rings induced by the analyte. Theoretical studies were carried out to shed light on the observed selectivity. Finally, the detection of these amines in urine was performed with limits of detection of 0.70 µM and 1.17 µM for spermine and spermidine, respectively.

2021 ◽  
Author(s):  
Jun Li ◽  
Wei Liu ◽  
Zhuhao Li ◽  
Yingcai Hu ◽  
Jinfeng Yang ◽  
...  

Unlike the aggregation caused quenching (ACQ) and reduced singlet oxygen (1O2) production of traditional photosensitizers at high concentrations, AIEgen photosensitizers show enhanced fluorescence emission and photosensitization ability in the aggregated...


2020 ◽  
Vol 17 (6) ◽  
pp. 472-478
Author(s):  
Wei-tao Gong ◽  
Wei-dong Qu ◽  
Guiling Ning

Two pyridinium amide-based receptors L1 and L2 with a small difference of H-bond position of the amide have been synthesized and characterized. Interestingly, they exhibited a huge difference in sensing towards AcO- and H2PO4 -, respectively. Receptor L1 was found to be ‘naked-eye’ selective for AcO- anions, while receptor L2 showed clear fluorescence enhancement selective to H2PO4 - anion. The recognition ability has been established by fluorescence emission, UV-vis spectra, and 1HNMR titration.


Amino Acids ◽  
2021 ◽  
Author(s):  
Tomohisa Yoshimura ◽  
Yuki Inokuchi ◽  
Chikako Mutou ◽  
Takanobu Sakurai ◽  
Tohru Nagahama ◽  
...  

AbstractTaurine, a sulfur-containing amino acid, occurs at high concentrations in the skin, and plays a role in maintaining the homeostasis of the skin. We investigated the effects of aging on the content and localization of taurine in the skin of mice and rats. Taurine was extracted from the skin samples of hairless mice and Sprague Dawley rats, and the taurine content of the skin was determined by high-performance liquid chromatography (HPLC). The results of the investigation revealed that the taurine content in both the dermis and epidermis of hairless mice declined significantly with age. Similar age-related decline in the skin taurine content was also observed in rats. In contrast, the taurine content in the sole remained unchanged with age. An immunohistochemical analysis also revealed a decreased skin taurine content in aged animals compared with younger animals, although no significant differences in the localization of taurine were observed between the two age groups. Supplementation of the drinking water of aged mice with 3% (w/v) taurine for 4 weeks increased the taurine content of the epidermis, but not the dermis. The present study showed for the first time that the taurine content of the skin decreased with age in mice and rats, which may be related to the impairment of the skin homeostasis observed with aging. The decreased taurine content of the epidermis in aged animals was able to be rescued by taurine supplementation.


Author(s):  
Marc Vanhove ◽  
Jean-Marc Wagner ◽  
Bernard Noppen ◽  
Bart Jonckx ◽  
Elke Vermassen ◽  
...  

AbstractIntravitreal (IVT) injection remains the preferred administration route of pharmacological agents intended for the treatment of back of the eye diseases such as diabetic macular edema (DME) and neovascular age-related macular degeneration (nvAMD). The procedure enables drugs to be delivered locally at high concentrations whilst limiting whole body exposure and associated risk of systemic adverse events. Nevertheless, intravitreally-delivered drugs do enter the general circulation and achieving an accurate understanding of systemic exposure is pivotal for the evaluation and development of drugs administered in the eye. We report here the full pharmacokinetic properties of THR-687, a pan RGD integrin antagonist currently in clinical development for the treatment of DME, in both rabbit and minipig. Pharmacokinetic characterization included description of vitreal elimination, of systemic pharmacokinetics, and of systemic exposure following IVT administration. For the latter, we present a novel pharmacokinetic model that assumes clear partition between the vitreous humor compartment itself where the drug is administered and the central systemic compartment. We also propose an analytical solution to the system of differential equations that represent the pharmacokinetic model, thereby allowing data analysis with standard nonlinear regression analysis. The model accurately describes circulating levels of THR-687 following IVT administration in relevant animal models, and we suggest that this approach is relevant to a range of drugs and analysis of subsequent systemic exposure.


2020 ◽  
Vol 8 (44) ◽  
pp. 15622-15625
Author(s):  
Hao Guo ◽  
Xin Yan ◽  
Bing Lu ◽  
Jin Wang ◽  
Xiaolei Yuan ◽  
...  

Two-step sequential fluorescence emission enhanced supramolecular nanoparticles are constructed from pillar[5]arene based host–guest interaction and a linear amphiphile. These supramolecular nanoparticles can be applied in mitochondria-targeted live cell imaging.


2013 ◽  
Vol 634-638 ◽  
pp. 2462-2465
Author(s):  
Wen Xian Li ◽  
Bo Yang Ao ◽  
Jing Zhang

A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, has been synthesized [using L as the first ligand, and dipyridyl L' as the second ligand]. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary europium complex has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu (III) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. The fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Elaine Mai ◽  
Joyce Chan ◽  
Levina Goon ◽  
Braeden K. Ego ◽  
Jack Bevers ◽  
...  

Abstract Background Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. Results We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. Conclusions Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.


The Analyst ◽  
2019 ◽  
Vol 144 (10) ◽  
pp. 3357-3363 ◽  
Author(s):  
Marina A. Dominguez ◽  
Matías Insausti ◽  
Romina Ilari ◽  
Graciela P. Zanini

Fluorescence emission enhancement by adsorption as a promising tool for the development of future green sensors.


Mutagenesis ◽  
2020 ◽  
Vol 35 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Permal Deo ◽  
Caitlin L McCullough ◽  
Theodora Almond ◽  
Emma L Jaunay ◽  
Leigh Donnellan ◽  
...  

Abstract This study investigated the effect of glucose and fructose, and advanced glycation end-products (AGEs) on genome damage in WIL2-NS cells, measured using the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The effect of AGEs was investigated using the bovine serum albumin (AGE-BSA) model system induced either with glucose (Glu–BSA) or with fructose (Fru–BSA). Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed higher Nε-carboxymethyllysine (CML; 26.76 ± 1.09 nmol/mg BSA) levels in the Glu–BSA model. Nε-Carboxyethyllysine (CEL; 7.87 ± 0.19 nmol/mg BSA) and methylglyoxal-derived hydroimidazolone-1 (MG-H1; 69.77 ± 3.74 nmol/mg BSA) levels were higher in the Fru–BSA model. Genotoxic effects were measured using CBMN-Cyt assay biomarkers [binucleated(BN) cells with micronuclei (MNi), BN with nucleoplasmic bridges (NPBs) and BN with nuclear buds (NBuds)] following 9 days of treatment with either glucose, fructose, Glu–BSA or Fru–BSA. Fructose treatment exerted a significant genotoxic dose–response effect including increases of BN with MNi (R2 = 0.7704; P = 0.0031), BN with NPBs (R2 = 0.9311; P < 0.0001) and BN with NBuds (R2 = 0.7118; P = 0.0091) on cells, whereas the DNA damaging effects of glucose were less evident. High concentrations of AGEs (400–600 µg/ml) induced DNA damage; however, there was no effect on cytotoxicity indices (necrosis and apoptosis). In conclusion, this study demonstrates a potential link between physiologically high concentrations of reducing sugars or AGEs with increased chromosomal damage which is an important emerging aspect of the pathology that may be induced by diabetes. Ultimately, loss of genome integrity could accelerate the rate of ageing and increase the risk of age-related diseases over the long term. These findings indicate the need for further research on the effects of glycation on chromosomal instability and to establish whether this effect is replicated in humans in vivo.


1969 ◽  
Vol 47 (11) ◽  
pp. 1803-1807 ◽  
Author(s):  
J. Michael Bristow

When grown in a stream of 5% CO2 in air on a solid substrate, the heterophyllous amphibious species Ranunculus flabellaris and Myriophyllum brasiliense developed many characteristics of the water form. Plants of the same clones grown in 0.03% CO2 exhibited the land form. Submerged plants grew rapidly when 5% CO2 in air was bubbled through the nutrient medium, and exhibited the typical water form, while plants kept in 0.03% CO2 grew poorly, and the small leaves which developed were intermediate in morphology between the land and water forms. These results are similar to those obtained previously with Marsilea. None of these species were able to utilize bicarbonate. The stream from which the Ranunculus used in the experiments was collected contained high concentrations of dissolved free CO2 during part of the growing season. Thus concentrations of free CO2 higher than those in air may be essential for the normal growth and development of submerged amphibious plants.


Sign in / Sign up

Export Citation Format

Share Document