The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 121951
Author(s):  
Ali M.A. Attia ◽  
A.R. Kulchitskiy ◽  
Mohamed Nour ◽  
Ahmed I. El-Seesy ◽  
Sameh A. Nada
Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 943 ◽  
Author(s):  
Shuang-xi Liu ◽  
Ming Lü

Diesel particulate filter is one of the most effective after-treatment techniques to reduce Particulate Matters (PM) emissions from a diesel engine, but the blocking Diesel Particulate Filter (DPF) will seriously affect the engine performance, so it is necessary to study the fault diagnosis of blocking DPF. In this paper, a simulation model of an R425DOHC diesel engine with wall-flow ceramic DPF was established, and then the model was verified with experimental data. On this basis, the fault diagnosis of the blocking DPF was studied by using spectral analysis on instantaneous exhaust pressure. The results showed that both the pre-DPF mean exhaust pressure and the characteristic frequency amplitude of instantaneous exhaust pressure can be used as characteristic parameters of monitoring the blockage fault of DPF, but it is difficult to monitor DPF blockage directly by instantaneous exhaust pressure. In terms of sensitivity, the characteristic frequency amplitude of instantaneous exhaust pressure is more suitable as a characteristic parameter to monitor DPF blockage than mean exhaust pressure. This work can lay an important theoretical foundation for the on-board diagnosis of DPF.


Author(s):  
Alexander Sappok ◽  
Victor W. Wong

Diesel particulate filters (DPFs) have seen widespread use in on- and off-road applications as an effective means for meeting increasingly stringent particle emission regulations. Over time, incombustible material or ash, primarily derived from metallic additives in the engine lubricant, accumulates in the DPF. Ash accumulation leads to increased flow restriction and an associated increase in pressure-drop across the particulate filter, negatively impacting engine performance and fuel economy and eventually requiring periodic filter service or replacement. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. The results of this work show ash accumulation and distribution in the DPF as a dynamic process with each stage of ash accumulation altering the filter’s pressure-drop response. Through a combined approach employing targeted experiments and comparison with the existing knowledge base, this work further demonstrates the significant effect ash deposits have on DPF pressure-drop sensitivity to soot accumulation. Ash deposits reduce the available filtration area, resulting in locally elevated soot loads and higher exhaust gas velocities through the filter, altering the conditions under which the soot is deposited and ultimately controlling the filter’s pressure-drop characteristics. In this study, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully controlled exhaust conditions. The ash loading system was coupled to the exhaust of a Cummins ISB diesel engine, allowing for accelerated ash loading and DPF performance evaluation with realistic exhaust conditions. Following DPF performance evaluation, the filters were subjected to a detailed post-mortem analysis in which key ash properties were measured and quantified. The experimental results, coupled with the ash property measurements, provide additional insight into the underlying physical mechanisms controlling ash properties, ash/soot interactions, and their effects on DPF performance.


Author(s):  
Alexander Sappok ◽  
Victor W. Wong

Diesel particulate filters (DPF) have seen widespread use in on- and off-road applications as an effective means for meeting increasingly stringent particle emissions regulations. Over time, incombustible material or ash, primarily derived from metallic additives in the engine lubricant, accumulates in the DPF. Ash accumulation leads to increased flow restriction and an associated increase in pressure drop across the particulate filter, negatively impacting engine performance and fuel economy, and eventually requiring periodic filter service or replacement. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. The results of this work show ash accumulation and distribution in the DPF as a dynamic process with each stage of ash accumulation altering the filter’s pressure drop response. Through a combined approach employing targeted experiments and comparison with the existing knowledge base, this work further demonstrates the significant effect ash deposits have on DPF pressure drop sensitivity to soot accumulation. Ash deposits reduce the available filtration area, resulting in locally elevated soot loads and higher exhaust gas velocities through the filter, altering the conditions under which the soot is deposited and ultimately control the filter’s pressure drop characteristics. In this study, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions. The ash loading system was coupled to the exhaust of a Cummins ISB diesel engine, allowing for accelerated ash loading and DPF performance evaluation with realistic exhaust conditions. Following DPF performance evaluation, the filters were subjected to a detailed post-mortem analysis in which key ash properties were measured and quantified. The experimental results, coupled with the ash property measurements, provide additional insight into the underlying physical mechanisms controlling ash properties, ash/soot interactions, and their effects on DPF performance.


2012 ◽  
Vol 229-231 ◽  
pp. 331-335
Author(s):  
Da Hai Jiang ◽  
Guang Tao Yao ◽  
Xin Yun Zi ◽  
Hong Wei Liu ◽  
Ming Mao

The paper has carried out numerical simulation and experimental study on the pressure loss of filter. Based on pressure loss model of filter, research methods of particulate accumulated characteristics has proposed according to the exhaust flow, exhaust temperature and exhaust back pressure. Meanwhile, the model is important for the online calculation of accumulated particulate matters in the filters and failure monitoring of diesel particulate filter.


Author(s):  
K.R. Sandhya ◽  
D. Rekha ◽  
P. Shanmughasundaram

To limit the adverse health effects to human beings due to the sub-micrometer particles emitted from the diesel engine exhaust, various after treatment devices have been developed. Number of researches have been done to improve the efficiency and to reduce the cost of the filters used to trap these diesel particulate matters. In this paper glass fiber filters have been used to trap the particulate matters. This attempt to use glass fiber as a filter is mainly to reduce the cost of the filter and to find a better alternative for trapping diesel particulates.


Sign in / Sign up

Export Citation Format

Share Document