frost risk
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Gustavo Bastos Braga ◽  
Hewlley Maria Acioli Imbuzeiro ◽  
Gabrielle Ferreira Pires ◽  
Lais Rosa de Oliveira ◽  
Rodney Alves Barbosa ◽  
...  

Abstract In developing countries, such as Brazil, farmers are susceptible to extreme events.The Brazilian federal government created insurance programs to mitigate extreme event effects, such as frost, called “Programa de Subvenção ao Prêmio do Seguro Rural”. Frost is an atmospheric phenomenon that causes damage to plants due to low temperatures that exceed their resistance to freezing. This paper seeks to verify the risk level of frost in Brazil, connecting this information with farmers, who contracted Rural Insurance to protect themselves from this extreme event. To reduce possible biases in calculating the frost probability, this study uses two climatological databases. The majority of the Brazilian territory has very low probabilities of this phenomenon occurring. In the databases used to verify the probability of a temperature below 2 °C, the data proposed by Sheffield paper, show that, in part of the Brazilian territory, there is less chance of frost than Xavier's data. Regardless of the database used, in Brazil, there are farmers who contract frost insurance in areas where the risks are close to zero.


2021 ◽  
Vol 306 ◽  
pp. 108450
Author(s):  
Écio Souza Diniz ◽  
Alexandre Simões Lorenzon ◽  
Nero Lemos Martins de Castro ◽  
Gustavo Eduardo Marcatti ◽  
Osmarino Pires dos Santos ◽  
...  

Author(s):  
Helfried Scheifinger

Phenology is the study of the seasonal timing of life cycle events. The Belgian botanist Charles Morren introduced the term in 1853, which is a combination of two Greek words, φαίνω, which means to show, to bring to light, make to appear, and λόγος, which means study, discourse, or reasoning. The global change discussion has stimulated phenological research, which as a consequence greatly advanced as science and evolved to one of the main climate impact indicators. Many of the earliest systematic efforts to collect phenological observations took place in countries sharing the Alps, most of which are still operating phenological networks. These phenological data sets are generally freely available to researchers, and numerous essential contributions to the topic of phenology and climate have been built on those data sets. Plant physiological processes underlying the ability of the plants to adapt to the year-to-year variability of the climate still constitutes largely a black box. Since the experiments of René Antoine Ferchault de Reaumur in the 18th century, it is known that temperature constitutes the main environmental driver of the seasonal development of the mid- to high-latitude plants. Second to temperature, day length governs the seasonal cycle of some species as an additional factor. Therefore, temperature-driven phenological models are able to simulate the year-to-year variability of phenological entry dates accurately enough for various applications, such as climate change impact research or numerical pollen forecast models, where the beginning of flowering of some plants is linked with the release of allergic pollen into the atmosphere. Large-scale circulation patterns, like the North Atlantic Oscillation, determine the frequency and intensity of warm and cold spells and decadal temperature trends over Europe. Combined anthropogenic and natural forcings explain the advance of spring phenology over the last 50 years, which is also clearly discernible in the area of the Alps. The early phenological spring starts in Western Europe, whereas later in the season it makes progress with a stronger southerly component across the Alps. The combined temporal and spatial trends have been studied along elevational gradients. Trends toward earlier entry dates are stronger at higher elevations, which indicates that the elevational phenological gradient has weakened since the mid-20th century. Similarly, the vegetation response to temperature is observed to decrease when moving from high to low latitudes. In contrast, the temporal response of plant phenology to increasing temperatures is less clear. Some works indeed demonstrate a decreasing temperature sensitivity with increasing temperature, which is explained as a result of a reduced winter chilling that delays spring phenology or of a limiting effect due to a shorter photoperiod. Other works report no change of temporal temperature sensitivity with increasing temperatures. Indigenous midlatitude vegetation is able to withstand large temperature variations during winter and spring. The safety margin between last frost events, budding, and leaf emergence was found to be uniform across elevations and taxa, except for beech trees. The probability of freezing damage to natural vegetation is almost nil, but late frost risk constitutes a real threat to fruit growers. The ratio of phenological and last frost trends is ambiguous. An increase or decrease in frost risk depends on regions, elevations, and species. Vegetation at high altitudes is exposed to a harsh climate with a long-lasting snow cover, low temperatures, and a short growing season. Snowmelt is a necessary but insufficient requirement for the start of the growing season, which has to be supplemented by plant-specific temperature sums to activate the growth of most alpine and subalpine species. The seasonal cycle has to be completed within a short time. Advances in remote sensing technology have provided access to high-resolution landscape scale phenological information. Especially in remote areas, like the Alps, in situ observations could be supplemented by satellite observations. Observations from both methods, I -situ and remote sensing, have been applied to describe spring vegetation dynamics, but the correlation between these data sets have typically been weak because of differences in temporal and spatial scales and resolutions. A successfully combined description of the seasonal vegetation cycle is still lacking. The area of the European Alps offers a wealth of long chronicles, containing historical phenological observations some of which have been extracted and digitized. Grape harvest dates belong to the most readily available historical phenological observations, which have helped reconstruct summer temperatures as far back as the 15th century.


2021 ◽  
Vol 18 ◽  
pp. 21-25
Author(s):  
Anne Gobin ◽  
Nicoletta Addimando ◽  
Christoph Ramshorn ◽  
Karl Gutbrod

Abstract. Agricultural production is largely determined by weather conditions during the crop growing season. An important aspect of crop yield estimation concerns crop growth development. The occurrence of meteorological events such as frosts, droughts or heat stress during the crop life cycle or during certain phenological stages helps explain yield fluctuations of common arable crops. We developed a methodology and visualisation tool for risk assessment, and tested the workflow for drought and frost risk for winter wheat, winter barley and grain maize in Belgium. The methodology has the potential to be extended to other extreme weather events and their impacts on crop growth in different regions of the world.


2021 ◽  
Vol 83 (1) ◽  
pp. 10-18
Author(s):  
Riyad Ismail ◽  
Jacob Crous ◽  
Giovanni Sale ◽  
Andrew Morris ◽  
Kabir Peerbhay
Keyword(s):  

2020 ◽  
Vol 27 (1) ◽  
pp. 165-176
Author(s):  
Isaac W. Park ◽  
Tadeo Ramirez‐Parada ◽  
Susan J. Mazer
Keyword(s):  

2020 ◽  
Vol 117 (22) ◽  
pp. 12192-12200 ◽  
Author(s):  
Constantin M. Zohner ◽  
Lidong Mo ◽  
Susanne S. Renner ◽  
Jens-Christian Svenning ◽  
Yann Vitasse ◽  
...  

Late-spring frosts (LSFs) affect the performance of plants and animals across the world’s temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees’ adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species’ innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 391 ◽  
Author(s):  
Ondřej Lhotka ◽  
Stefan Brönnimann

We assessed future changes in spring frost risk for the Aare river catchment that comprises the Swiss Plateau, the most important agricultural region of Switzerland. An ensemble of 15 bias-corrected regional climate model (RCM) simulations from the EXAR data set forced by the RCP 4.5 and RCP 8.5 concentration pathways were analysed for two future periods. Correlating actual meteorological observations and Swiss phenological spring index, we proposed and tested an RCM-compatible methodology (based on temperature data only) for estimating a start of spring and severity of frost events. In the historical climate, a significant advancement in start of spring was observed and frost events were more frequent in those years in which spring started sooner. In 2021–2050, spring is projected to start eight (twelve) days earlier, considering the RCP 4.5 (8.5) scenario. Substantial changes were simulated for the 2070–2099 period under RCP 8.5, when the total severity of frost events was projected to be increased by a factor of 2.1 compared to the historical climate. The study revealed the possible future increase of vegetation exposure to spring frost in Switzerland and that this phenomenon is noticeable even in the near future under the ‘low concentration’ RCP 4.5 scenario.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 460
Author(s):  
Yashvir S. Chauhan ◽  
Merrill Ryan

Post-flowering frosts cause appreciable losses to the Australian chickpea industry. The Northern Grains Region (NGR) of Australia, which accounts for nearly 95% of chickpea production in Australia, is frequently subjected to such events. The objective of this study was to map frost risk in chickpea in the NGR and develop strategies to minimise the impacts of such risk. The Agricultural Production System Simulator (APSIM) modelling framework was used to determine spatial and temporal trends in post-flowering frost risk. The NGR could be divided into six broad sub-regions, each delineating locations with similar frost risk. The risk was nearly two to three times greater in the Southern Downs and Darling Downs sub-regions as compared to the Central Queensland Highlands, Dawson Callide, New South Wales, and Northern New South Wales–Western Downs sub-regions. There was an increasing trend in the frequency of frost events in the Southern Downs and New South Wales sub-regions, and a decreasing trend in the Central Queensland Highlands and Dawson Callide sub-regions, consistent with the changing climate of the NGR. In each sub-region, frost risk declined with delayed sowings, but such sowings resulted in simulation of reduced water limited yield potential (unfrosted) as well. The model output was also used to compute 10, 30, 50, and 70% probabilities of the last day of experiencing −3 to 2 °C minimum temperatures and identify the earliest possible sowings that would avoid such temperatures after flowering. Choosing the earliest sowing times with a 30% frost risk could help increase overall yields in environments with high frost risk. Simulations involving genotype x environment x management interactions suggested additional opportunities to minimise frost losses through the adoption of particular cultivars of differing phenology and the use of different agronomy in various environments of the NGR. The study indicates that there is considerable variation in frost risk across the NGR and that manipulating flowering times either through time of sowing or cultivar choice could assist in minimising yield losses in chickpea due to frost.


2020 ◽  
Author(s):  
Inga Menke ◽  
Peter Pfleiderer ◽  
Carl-Friedrich Schleussner

<p>The impacts of global warming on agriculture and crop production are already visible today and are projected to intensify in the future. As horticultural and agricultural systems are complex organisms, their responses to changing climate can be non-linear and at times counter-intuitive. These systems undergo yearly cycles of growth with different plant characteristics in each of their phenological phases. They are thus especially sensitive to changes in seasonality besides changes in the annual mean and single extreme events.</p><p>Here we show that as a result of warmer winters, the risk of frost damages on apple trees in Germany is projected to be about 10% higher in a 2°C world compared to today. Warmer winters lead to less frost days but also to earlier apple blossom. This can result in overall increase in years where frost days occur after blossom.</p><p>Using large ensemble climate simulations, we analyze this compound event of frost days after blossom – frost days after warm winters. Although the projected shift in blossom day and the decrease in frost days is relatively homogeneous over Germany, the change in frost risk varies considerably between regions. Our results highlight the importance of treating frost risk as a compound event of frost days after warm winters instead of comparing the average shift in blossom days with the decrease in frost days.</p><p>Reference: Pfleiderer, P., Menke, I. & Schleussner, C.-F. Increasing risks of apple tree frost damage under climate change. Clim. Change (2019). doi:10.1007/s10584-019-02570-y</p>


Sign in / Sign up

Export Citation Format

Share Document