scholarly journals Increasing risks of apple tree frost damage under climate change

Author(s):  
Inga Menke ◽  
Peter Pfleiderer ◽  
Carl-Friedrich Schleussner

<p>The impacts of global warming on agriculture and crop production are already visible today and are projected to intensify in the future. As horticultural and agricultural systems are complex organisms, their responses to changing climate can be non-linear and at times counter-intuitive. These systems undergo yearly cycles of growth with different plant characteristics in each of their phenological phases. They are thus especially sensitive to changes in seasonality besides changes in the annual mean and single extreme events.</p><p>Here we show that as a result of warmer winters, the risk of frost damages on apple trees in Germany is projected to be about 10% higher in a 2°C world compared to today. Warmer winters lead to less frost days but also to earlier apple blossom. This can result in overall increase in years where frost days occur after blossom.</p><p>Using large ensemble climate simulations, we analyze this compound event of frost days after blossom – frost days after warm winters. Although the projected shift in blossom day and the decrease in frost days is relatively homogeneous over Germany, the change in frost risk varies considerably between regions. Our results highlight the importance of treating frost risk as a compound event of frost days after warm winters instead of comparing the average shift in blossom days with the decrease in frost days.</p><p>Reference: Pfleiderer, P., Menke, I. & Schleussner, C.-F. Increasing risks of apple tree frost damage under climate change. Clim. Change (2019). doi:10.1007/s10584-019-02570-y</p>

2021 ◽  
Vol 5 ◽  
Author(s):  
Ateeq Shah ◽  
Mahtab Nazari ◽  
Mohammad Antar ◽  
Levini A. Msimbira ◽  
Judith Naamala ◽  
...  

Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.


2019 ◽  
Vol 157 (3-4) ◽  
pp. 515-525 ◽  
Author(s):  
Peter Pfleiderer ◽  
Inga Menke ◽  
Carl-Friedrich Schleussner

AbstractAnthropogenic climate change is affecting agriculture and crop production. The responses of horticultural and agricultural systems to changing climatic conditions can be non-linear and at times counter-intuitive. Depending on the characteristics of the system, the actual impact can arise as a result of a combination of climate hazards or compound events. Here, we show that compound events can lead to increased risk of frost damage for apple fruit trees in Germany in a 2 °C warmer world of up to 10% relative to present day. Although the absolute number of frost days is declining, warmer winters also lead to earlier blossom of fruit trees, which in turn can lead to regionally dependent increased risks of the occurrence of frost days after apple blossom. In southern Germany, warmer winters may also lead to an increase in years in which apple yield is negatively affected by a lack of sufficient amount of cold days to trigger the seasonal response of the trees. Our results show how cropping system responses to seasonal climate can lead to unexpected effects of increased risk of frost damage as a result of warmer winters. An improved understanding of ecosystem responses to changes in climate signals is important to fully assess the impacts of climate change.


2018 ◽  
pp. 75-89
Author(s):  
Zoltán Berzsényi

Never has the need been greater for an ecosystem approach to agriculture. As our global population exceeds 9 billion in the next 30 years, with a concomitant demand for agricultural products, ever more pressure will be placed on our agricultural systems. Meanwhile, climate change is altering the ecological settings in which agriculture is practiced, demanding adaptation. Knowledge generated by long-term research will help to address one of the grand challenges of our time: how to meet sustainably the growing world demand for agricultural products – in a way that minimizes environmental harm and enhances the delivery of a diverse array of ecosystem services.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2558 ◽  
Author(s):  
Yifen Shang ◽  
Md. Kamrul Hasan ◽  
Golam Jalal Ahammed ◽  
Mengqi Li ◽  
Hanqin Yin ◽  
...  

In the era of climate change, global agricultural systems are facing numerous, unprecedented challenges. In order to achieve food security, advanced nano-engineering is a handy tool for boosting crop production and assuring sustainability. Nanotechnology helps to improve agricultural production by increasing the efficiency of inputs and minimizing relevant losses. Nanomaterials offer a wider specific surface area to fertilizers and pesticides. In addition, nanomaterials as unique carriers of agrochemicals facilitate the site-targeted controlled delivery of nutrients with increased crop protection. Due to their direct and intended applications in the precise management and control of inputs (fertilizers, pesticides, herbicides), nanotools, such as nanobiosensors, support the development of high-tech agricultural farms. The integration of biology and nanotechnology into nonosensors has greatly increased their potential to sense and identify the environmental conditions or impairments. In this review, we summarize recent attempts at innovative uses of nanotechnologies in agriculture that may help to meet the rising demand for food and environmental sustainability.


Author(s):  
William R. Sutton ◽  
Jitendra P. Srivastava ◽  
James E. Neumann ◽  
Peter Droogers ◽  
Brent Boehlert

The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Yuan Gao ◽  
Anyu Zhang ◽  
Yaojie Yue ◽  
Jing’ai Wang ◽  
Peng Su

Suitable land is an important prerequisite for crop cultivation and, given the prospect of climate change, it is essential to assess such suitability to minimize crop production risks and to ensure food security. Although a variety of methods to assess the suitability are available, a comprehensive, objective, and large-scale screening of environmental variables that influence the results—and therefore their accuracy—of these methods has rarely been explored. An approach to the selection of such variables is proposed and the criteria established for large-scale assessment of land, based on big data, for its suitability to maize (Zea mays L.) cultivation as a case study. The predicted suitability matched the past distribution of maize with an overall accuracy of 79% and a Kappa coefficient of 0.72. The land suitability for maize is likely to decrease markedly at low latitudes and even at mid latitudes. The total area suitable for maize globally and in most major maize-producing countries will decrease, the decrease being particularly steep in those regions optimally suited for maize at present. Compared with earlier research, the method proposed in the present paper is simple yet objective, comprehensive, and reliable for large-scale assessment. The findings of the study highlight the necessity of adopting relevant strategies to cope with the adverse impacts of climate change.


2016 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Emmanuel Nyadzi

<p>The study examines how farmers’ observations of climate variability and change correspond with 42 years (1970-2011) meteorological data of temperature and rainfall. It shows how farmers in the Northern Region of Ghana adjust to the changing climate and explore the various obstacles that hinder the implementation of their adaptation strategies. With the help of an extension officer, 200 farmers from 20 communities were randomly selected based on their farming records. Temperatures over the last four decades (1970-2009) increased at a rate of 0.04 (± 0.41) ˚C and 0.3(± 0.13)˚C from 2010-2011 which is consistent to the farmers (82.5%) observations. Rainfall within the districts are characterised by inter-annual and monthly variability. It experienced an increased rate of 0.66 (± 8.30) mm from 1970-2009, which was inconsistent with the farmers (81.5%) observation. It however decreased from 2010-2011 at a huge rate of -22.49 (±15.90) mm which probably was the reason majority of the respondents claim rainfall was decreasing. Only 64.5% of the respondents had adjusted their farming activities because of climate variability and change. They apply fertilizers and pesticides, practice soil and water conservation, and irrigation for communities close to dams. Respondents desire to continue their current adaptation methods but may in the future consider changing crop variety, water-harvesting techniques, change crop production to livestock keeping, and possibly migrate to urban centers. Lack of climate change education, low access to credit and agricultural inputs are some militating factors crippling the farmers’ effort to adapt to climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document