scholarly journals Preliminary Data on Geochemical Characteristics of Major and Trace Elements in Typical Biominerals: From the Perspective of Human Kidney Stones

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1396
Author(s):  
Yu Tian ◽  
Guilin Han ◽  
Jie Zeng ◽  
Qian Zhang ◽  
Lifang Xu ◽  
...  

The chemical composition of biominerals is essential for understanding biomineral formation and is regarded as an attractive subject in bio-mineralogical research on human kidney stones (urinary calculi). In order to obtain more geochemically interpreted data on biogenic minerals, mineralogical compositions and major and trace element concentrations of sixty-six kidney stone samples derived from kidney stone removal surgeries were measured. Infrared spectroscopy results showed that calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) were the two main mineral components of kidney stones. Geochemical results indicated that major and trace element concentrations were present in the following order: Ca > Mg > Na > K > Zn > Fe > Pb > Ba > Cu > Ti > Mo > Cd > Cr. With the exception of Ca, Mg was the second-most abundant element. Zn exhibited higher concentrations relative to other trace elements, which suggests a potential substitution of calcium by metal ions with a similar charge and radius rather than by metals in kidney stone formation. Pb appeared in significantly higher concentrations than in previous studies, which indicates Pb enrichment in the environment. In order to discern multi-element relationships within kidney stones, principal component analysis was applied. Three principal components (PCs, eigenvalues >1) were extracted to explain 64.4% of the total variance. The first component exhibited positively correlated Na-Zn-Cr-Mo-Cd-Pb, while the second component exhibited more positively weighted Mg-K-Ba-Ti. Fe-Cu demonstrated a positive correlation in the third component. This study suggests that Ca exhibits a preference for uptake by oxalates during human urinary stone crystallization, while other alkali metals and alkaline earth metals precipitate with phosphate.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yutaro Tanaka ◽  
Mihoko Maruyama ◽  
Atsushi Okada ◽  
Yoshihiro Furukawa ◽  
Koichi Momma ◽  
...  

AbstractThe pathogenesis of kidney stone formation includes multi-step processes involving complex interactions between mineral components and protein matrix. Calcium-binding proteins in kidney stones have great influences on the stone formation. The spatial distributions of these proteins in kidney stones are essential for evaluating the in vivo effects of proteins on the stone formation, although the actual distribution of these proteins is still unclear. We reveal micro-scale distributions of three different proteins, namely osteopontin (OPN), renal prothrombin fragment 1 (RPTF-1), and calgranulin A (Cal-A), in human kidney stones retaining original mineral phases and textures: calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD). OPN and RPTF-1 were distributed inside of both COM and COD crystals, whereas Cal-A was distributed outside of crystals. OPN and RPTF-1 showed homogeneous distributions in COM crystals with mosaic texture, and periodically distributions parallel to specific crystal faces in COD crystals. The unique distributions of these proteins enable us to interpret the different in vivo effects of each protein on CaOx crystal growth based on their physico-chemical properties and the complex physical environment changes of each protein. This method will further allow us to elucidate in vivo effects of different proteins on kidney stone formation.


1993 ◽  
Vol 47 (3) ◽  
pp. 334-337 ◽  
Author(s):  
Venkata Ramana Kodati ◽  
Anthony T. Tu ◽  
Ravindra Nath ◽  
Jacob L. Turumin

Raman spectroscopic analysis of kidney stones of mixed composition and of unusual stones is presented. Raman spectroscopy was used to analyze the chemical composition of kidney stones without extraction. A kidney stone sample was irradiated by laser light of 514.5 nm, and the scattered light was analyzed by a Raman spectrometer. The first stone was determined to be a mixture of calcium oxalate dihydrate and hydroxyapatite and the second one to be a mixture of calcium oxalate monohydrate, uric acid, and hydroxyapatite. The third and fourth stones were not mixed-composition stones, but rather stones with unusual composition. One was concluded to be carboxyapatite, and the other was mucoprotein-type stone. The present investigation indicates that Raman spectroscopy is a useful tool for direct analysis of kidney stone without going through the usual procedure of crushing, extracting, and carrying out tedious wet chemical analysis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhang Hui ◽  
Zhu Jiang ◽  
Du Qiao ◽  
Zhao Bo ◽  
Kang Qiyuan ◽  
...  

AbstractKidney stones are a common threat to the health of elderly patients with a high incidence of disease. However, the specific molecular mechanism of the formation of kidney stones has not been elucidated. Here, we combined signalling molecules with signalling pathways in a double positive circulation regulation model. In addition, we found that LCN2 plays a role in promoting kidney stones through regulation of the ERK signalling pathway and expression of other kidney stone-related genes. LCN2 expression was upregulated upon oxalate stimulation. P-ERK1/2 inhibition by U0126 in kidney epithelial cells resulted in decreased expression of LCN2. Furthermore, the upregulation of LCN2 not only depended on the activation of the ERK signalling pathway but also regulated the activation of the ERK signalling pathway. Importantly, upregulation of LCN2 not only caused kidney epithelial cell damage but also promoted the expression of other kidney stone-related genes. Our findings improved the understanding of LCN2 and might lead to the development of new therapeutic and prognostic markers for kidney stones.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 702-704
Author(s):  
Bhavisha Bhupendrabhai Patel

Kidney stone disease is an increasing disorder of humans. It affects about 12% of the world population. Epidemiological data have shown that calcium oxalate is the predominant mineral in a majority of kidney stones. [1] It has been associated with an increased risk of end-stage renal failure. Kidney stones   result from a succession of several physicochemical events including super saturation, nucleation, growth, aggregation, and retention within the kidneys. Kidney stones may cause extreme pain and blockage of urine flow .The average life time risk of stone formation has been reported in the range of 5-10 %.Recurrent stone formation is a common part of the medical care of patients with stone disease.[2] Kidney stone disease is usually treated with medications that may cause a number of side-effects. Even improved and besides the high cost that imposes, compelling data now suggest that exposure to shock waves in therapeutic doses may cause acute renal injury, decrease in renal function and an increase in stone recurrence. Data from in vitro, in vivo and clinical trials reveal that phytotherapeutic agents could be useful as either an alternative therapy in the management of urolithiasis. The present review therefore critically explains the potential usefulness of herbal medicines in the management of urolithiasis. Keywords:  Kidney stones, Calcium oxalate, Herbal plant extracts, Alternative medicine


1965 ◽  
Vol 13 (3) ◽  
pp. 155-160 ◽  
Author(s):  
H. J. KEUTEL

Fluorescent labeled antibodies were used for the demonstration of uromucoid. This urine specific mucoprotein is demonstrably present only in the epithelial cells of the proximal segments of the normal human renal tubules and in the matrix of human kidney stones of all the common crystalline compositions.


OENO One ◽  
2022 ◽  
Vol 56 (1) ◽  
pp. 29-40
Author(s):  
Robin Cellier ◽  
Sylvain Berail ◽  
Ekaterina Epova ◽  
Julien Barre ◽  
Fanny Claverie ◽  
...  

Thirty-nine Champagnes from six different brands originating from the AOC Champagne area were analyzed for major and trace element concentrations in the context of their production processes and in relation to their geographical origins. Inorganic analyses were performed on the must (i.e., grape juice) originating from different AOC areas and the final Champagne. The observed elemental concentrations displayed a very narrow range of variability. Typical concentrations observed in Champagne are expressed in mg/L for elements such as K, Ca, Mg, Na, B, Fe, A, and Mn. They are expressed in µg/L for trace elements such as Sr, Rb, Ba, Cu, Ni, Pb Cr and Li in decreasing order of concentrations. This overall homogeneity was observed for Sr and Rb in particular, which showed a very narrow range of concentrations (150 < Rb < 300 µg/L and 150 < Sr < 350 µg/L) in Champagne. The musts contained similar levels of concentration but showed slightly higher variability since they are directly influenced by the bedrock, which is quite homogenous in the AOC area being studied. Besides the homogeneity of the bedrock, the overall stability of the concentrations recorded in the samples can also be directly linked to the successive blending steps, both at the must level and prior to the final bottling. A detailed analysis of the main additives, sugar, yeast and bentonite, during the Champagne production process, did not show a major impact on the elemental signature of Champagne.


Kidney360 ◽  
2020 ◽  
pp. 10.34067/KID.0006942020
Author(s):  
Jessica J. Saw ◽  
Mayandi Sivaguru ◽  
Elena M. Wilson ◽  
Yiran Dong ◽  
Robert A. Sanford ◽  
...  

Background: Human kidney stones form via repeated events of mineral precipitation, partial dissolution and reprecipitation, which are directly analogous to similar processes in other natural and man-made environments where resident microbiomes strongly influence biomineralization. High-resolution microscopy and high-fidelity metagenomic (microscopy-to-omics) analyses, applicable to all forms of biomineralization, have been applied to assemble definitive evidence of in vivo microbiome entombment during urolithiasis. Methods: Stone fragments were collected from a randomly chosen cohort of 20 patients using standard percutaneous nephrolithotomy (PCNL). Fourier transform infrared (FTIR) spectroscopy indicated that 18 of these patients were calcium oxalate (CaOx) stone formers, while one patient each formed brushite and struvite stones. This apportionment is consistent with global stone mineralogy distributions. Stone fragments from 7 of these 20 patients (5 CaOx, 1 brushite and 1 struvite) were thin sectioned and analyzed using brightfield (BF), polarization (POL), confocal, superresolution autofluorescence (SRAF) and Raman techniques. DNA from remaining fragments, grouped according to each of the 20 patients, were analyzed with amplicon sequencing of 16S rRNA gene sequences (V1-V3, V3-V5) and internal transcribed spacer (ITS1, ITS2) regions. Results: Bulk entombed DNA was sequenced from stone fragments in 11 of the 18 CaOx patients, as well as the brushite and struvite patients. These analyses confirmed the presence of an entombed low-diversity community of bacteria and fungi, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Aspergillus niger. Bacterial cells ~1  µm in diameter were also optically observed to be entombed and well-preserved in amorphous hydroxyapatite spherules and fans of needle-like crystals of brushite and struvite. Conclusions: These results indicate a microbiome is entombed during in vivo CaOx stone formation. Similar processes are implied for brushite and struvite stones. This evidence lays the groundwork for future in vitro and in vivo experimentation to determine how the microbiome may actively and/or passively influence kidney stone biomineralization.


2001 ◽  
Vol 101 (2) ◽  
pp. 159-168 ◽  
Author(s):  
David E. FLEMING ◽  
Wilhelm VAN BRONSWIJK ◽  
Rosemary Lyons RYALL

To assess the binding of individual amino acids to the principal calcium minerals found in human kidney stones, the adsorption of 20 amino acids on to calcium oxalate monohydrate, CaHPO4.2H2O, Ca3(PO4)2 and Ca5(PO4)3OH crystals was determined over the physiological urinary pH range (pH 5–8) in aqueous solutions. All amino acids adsorbed most strongly at pH 5, and this decreased in all cases as the pH was increased. The amino acids which adsorbed most strongly were aspartic acid, glutamic acid and γ-carboxyglutamic acid, with the last displaying the strongest affinity. All amino acids bound more avidly to calcium oxalate monohydrate than to any of the phosphate minerals. Adsorption on to CaHPO4.2H2O was generally higher than for Ca3(PO4)2 and Ca5(PO4)3OH, for which all amino acids, with the exception of γ-carboxyglutamic acid, had only a weak affinity. The binding affinity of these acids is thought to be due to their zwitterions being able to adopt conformations in which two carboxyl groups, and possibly the amino group, can interact with the mineral surface without further rotation. The strong binding affinity of di-and tri-carboxylic acids for calcium stone minerals indicates that proteins rich in these amino acids are more likely to play a functional role in stone pathogenesis than those possessing only a few such residues. These findings, as well as the preferential adsorption of the amino acids for calcium oxalate monohydrate rather than calcium phosphate minerals, have ramifications for research aimed at discovering the true role of proteins in stone formation and for potential application in the design of synthetic peptides for use in stone therapy.


Sign in / Sign up

Export Citation Format

Share Document