wearable cardioverter defibrillator
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 78)

H-INDEX

20
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 22
Author(s):  
Ursula Rohrer ◽  
Martin Manninger ◽  
Andreas Zirlik ◽  
Daniel Scherr

A wearable cardioverter-defibrillator (WCD) is a temporary treatment option for patients at high risk for sudden cardiac death (SCD) and for patients who are temporarily not candidates for an implantable cardioverter defibrillator (ICD). In addition, the need for telemedical concepts in the detection and treatment of heart failure (HF) and its arrhythmias is growing. The WCD has evolved from a shock device detecting malignant ventricular arrhythmias (VA) and treating them with shocks to a heart-failure-monitoring device that captures physical activity and cardioacoustic biomarkers as surrogate parameters for HF to help the treating physician surveil and guide the HF therapy of each individual patient. In addition to its important role in preventing SCD, the WCD could become an important tool in heart failure treatment by helping prevent HF events by detecting imminent decompensation via remote monitoring and monitoring therapy success.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oishee Mazumder ◽  
Rohan Banerjee ◽  
Dibyendu Roy ◽  
Ayan Mukherjee ◽  
Avik Ghose ◽  
...  

Wearable cardioverter defibrillator (WCD) is a life saving, wearable, noninvasive therapeutic device that prevents fatal ventricular arrhythmic propagation that leads to sudden cardiac death (SCD). WCD are frequently prescribed to patients deemed to be at high arrhythmic risk but the underlying pathology is potentially reversible or to those who are awaiting an implantable cardioverter-defibrillator. WCD is programmed to detect appropriate arrhythmic events and generate high energy shock capable of depolarizing the myocardium and thus re-initiating the sinus rhythm. WCD guidelines dictate very high reliability and accuracy to deliver timely and optimal therapy. Computational model-based process validation can verify device performance and benchmark the device setting to suit personalized requirements. In this article, we present a computational pipeline for WCD validation, both in terms of shock classification and shock optimization. For classification, we propose a convolutional neural network-“Long Short Term Memory network (LSTM) full form” (Convolutional neural network- Long short term memory network (CNN-LSTM)) based deep neural architecture for classifying shockable rhythms like Ventricular Fibrillation (VF), Ventricular Tachycardia (VT) vs. other kinds of non-shockable rhythms. The proposed architecture has been evaluated on two open access ECG databases and the classification accuracy achieved is in adherence to American Heart Association standards for WCD. The computational model developed to study optimal electrotherapy response is an in-silico cardiac model integrating cardiac hemodynamics functionality and a 3D volume conductor model encompassing biophysical simulation to compute the effect of shock voltage on myocardial potential distribution. Defibrillation efficacy is simulated for different shocking electrode configurations to assess the best defibrillator outcome with minimal myocardial damage. While the biophysical simulation provides the field distribution through Finite Element Modeling during defibrillation, the hemodynamic module captures the changes in left ventricle functionality during an arrhythmic event. The developed computational model, apart from acting as a device validation test-bed, can also be used for the design and development of personalized WCD vests depending on subject-specific anatomy and pathology.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7798
Author(s):  
Henrike Aenne Katrin Hillmann ◽  
Stephan Hohmann ◽  
Johanna Mueller-Leisse ◽  
Christos Zormpas ◽  
Jörg Eiringhaus ◽  
...  

The wearable cardioverter–defibrillator (WCD) is used in patients with newly diagnosed heart failure and reduced ejection fraction (HFrEF). In addition to arrhythmic events, the WCD provides near-continuous telemetric heart failure monitoring. The purpose of this study was to evaluate the clinical relevance of additionally recorded parameters, such as heart rate or step count. We included patients with newly diagnosed HFrEF prescribed with a WCD. Via the WCD, step count and heart rate were acquired, and an approximate for heart rate variability (HRV5) was calculated. Multivariate analysis was performed to analyze predictors for an improvement in left ventricular ejection fraction (LVEF). Two hundred and seventy-six patients (31.9% female) were included. Mean LVEF was 25.3 ± 8.5%. Between the first and last seven days of usage, median heart rate fell significantly (p < 0.001), while median step count and HRV5 significantly increased (p < 0.001). In a multivariate analysis, a delta of HRV5 > 23 ms was an independent predictor for LVEF improvement of ≥10% between prescription and 3-month follow-up. Patients with newly diagnosed HFrEF showed significant changes in heart rate, step count, and HRV5 between the beginning and end of WCD prescription time. HRV5 was an independent predictor for LVEF improvement and could serve as an early indicator of treatment response.


2021 ◽  
Vol 10 (22) ◽  
pp. 5435
Author(s):  
Christian Blockhaus ◽  
Stephan List ◽  
Hans-Peter Waibler ◽  
Jan-Erik Gülker ◽  
Heinrich Klues ◽  
...  

Background: In patients with reduced left ventricular ejection fraction (LVEF) who are at risk of sudden cardiac death, a wearable cardioverter-defibrillator (WCD) is recommended as a bridge to the recovery of LVEF or as a bridge to the implantation of a device. In addition to its function to detect and treat malignant arrhythmia, WCD can be used via an online platform as a telemonitoring system to supervise patients’ physical activity, compliance, and heart rate. Methods: We retrospectively analyzed 173 patients with regard to compliance and heart rate after discharge. Results: Mean WCD wearing time was 59.75 ± 35.6 days; the daily wearing time was 21.19 ± 4.65 h. We found significant differences concerning the patients’ compliance. Men showed less compliance than women, and younger patients showed less compliance than patients who were older. Furthermore, we analyzed the heart rate from discharge until the end of WCD prescription and found a significant decrease from discharge to 4, 8, or 12 weeks. Conclusion: WCD can be used as a telemonitoring system to help the involved heart failure unit or physicians attend to and adjust the medical therapy. Furthermore, specific patient groups should be educated more intensively with respect to compliance.


Author(s):  
Tasuku Kurokawa ◽  
Takanori Arimoto ◽  
Naoaki Hashimoto ◽  
Kyoko Koyama ◽  
Ken Watanabe ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7054
Author(s):  
Boldizsar Kovacs ◽  
Flavia Müller ◽  
David Niederseer ◽  
Nazmi Krasniqi ◽  
Ardan M. Saguner ◽  
...  

Background: The wearable cardioverter–defibrillator (WCD) has a built-in accelerometer, which allows tracking of patients’ physical activity by remote monitoring. It is unclear whether WCD-measured physical activity, step count, and heart rate correlate with established tools for the assessment of cardiopulmonary fitness such as the 6-min walk test (6MWT). Objective: To correlate measurements of patient physical activity through the WCD with a supervised 6MWT during in-patient cardiac rehabilitation (CR) and to allow their use as surrogate parameters of cardiopulmonary fitness in an out-patient setting. Methods: Consecutive patients with a history of WCD use treated at our center and an in-patient CR following an index hospitalization were included. Baseline characteristics, measurements of WCD accelerometer (median daily step count, median daily activity level), median daily heart rate, and clinically supervised 6MWT at admission and discharge of CR were obtained. Results: Forty-one patients with a mean age of 55.5 (±11.5) years were included. Thirty-five patients (85.4%) were male and 28 patients (68%) had a primary prophylactic WCD-indication. The most common underlying heart diseases were ischemic heart disease (24 patients 58.6%) and dilated cardiomyopathy (13 patients, 31.7%). Median CR duration was 20 (IQR 19.75–26.25) days. 6MWT distance increased from a mean of 329 m (±107) to 470 m (±116) during CR (p < 0.0001). The median daily step count and activity level increased significantly, from 5542 steps (IQR 3718–7055) to 8778 (IQR 6229–12,920, p < 0.0001) and median 117 × 106 (IQR 96 × 106–142 × 106) threshold value exceedance (TVE) to 146 × 106 TVE (IQR 110 × 106–169 × 106, p < 0.0001), respectively. The median heart rate was 74.9 bpm (IQR 65.8–84.5) and 70.2 (IQR 64.1–77.3, p = 0.09) at admission and discharge, respectively. Of all three parameters, median daily step count showed the best correlation to the results of the 6MWT at admission and discharge (r = 0.32, p = 0.04 and 0.37, p = 0.02, respectively). Conclusions: Remote monitoring of median daily step count as assessed by the WCD’s accelerometer showed positive correlation with the 6MWT and could serve as a surrogate for cardiopulmonary exercise capacity. Assessment of daily step count and activity level measured remotely by the WCD could help to tailor optimal exercise instruction for patients not attending CR.


2021 ◽  
Author(s):  
Johanna Mueller‐Leisse ◽  
Johanna Brunn ◽  
Christos Zormpas ◽  
Stephan Hohmann ◽  
Henrike Aenne Katrin Hillmann ◽  
...  

2021 ◽  
Vol 10 (17) ◽  
pp. 3811
Author(s):  
Boldizsar Kovacs ◽  
Haran Burri ◽  
Andres Buehler ◽  
Sven Reek ◽  
Christian Sticherling ◽  
...  

Background: The wearable cardioverter defibrillator (WCD) uses surface electrodes to detect arrhythmia before initiating a treatment sequence. However, it is also prone to inappropriate detection due to artefacts. Objective: The aim of this study is to assess the alarm burden in patients and its impact on clinical outcomes. Methods: Patients from the nationwide Swiss WCD Registry were included. Clinical characteristics and data were obtained from the WCDs. Arrhythmia recordings ≥30 s in length were analysed and categorized as VT/VF, atrial fibrillation (AF), supraventricular tachycardia (SVT) or artefact. Results: A total of 10653 device alarms were documented in 324 of 456 patients (71.1%) over a mean WCD wear-time of 2.0 ± 1.6 months. Episode duration was 30 s or more in 2996 alarms (28.2%). One hundred and eleven (3.7%) were VT/VF episodes. The remaining recordings were inappropriate detections (2736 (91%) due to artefacts; 117 (3.7%) AF; 48 (1.6%) SVT). Two-hundred and seven patients (45%) had three or more alarms per month. Obesity was significantly associated with three or more alarms per month (p = 0.01, 27.7% vs. 15.9%). High alarm burden was not associated with a lower average daily wear time (20.8 h vs. 20.7 h, p = 0.785) or a decreased implantable cardioverter defibrillator implantation rate after stopping WCD use (48% vs. 47.3%, p = 0.156). Conclusions: In patients using WCDs, alarms emitted by the device and impending inappropriate shocks were frequent and most commonly caused by artefacts. A high alarm burden was associated with obesity but did not lead to a decreased adherence.


Sign in / Sign up

Export Citation Format

Share Document