vortex zone
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 11)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 22 (24) ◽  
pp. 13518
Author(s):  
Natalia Pismenskaya ◽  
Olesya Rybalkina ◽  
Ilya Moroz ◽  
Semen Mareev ◽  
Victor Nikonenko

Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4), and citric (NaH2Cit) acids salts, and NaCl were investigated. It was shown that, for a given current density normalized to the theoretical limiting current calculated by the Leveque equation (i/ilimtheor), EC vortex zone thickness, dEC, decreases in the order NaCl > NaHT > NaH2PO4 > NaH2Cit. This order is inverse to the increase in the intensity of proton generation in the membrane systems under study. The higher the intensity of proton generation, the lower the electroconvection. This is due to the fact that protons released into the depleted solution reduce the space charge density, which is the driver of EC. In all studied systems, a region in chronopotentiograms between the rapid growth of the potential drop and the attainment of its stationary values corresponds to the appearance of EC vortex clusters. The amplitude of the potential drop oscillations in the chronopotentiograms is proportional to the size of the observed vortex clusters.


Author(s):  
Александр Григорьевич Жирков ◽  
Александр Павлович Усатый ◽  
Елена Петровна Авдеева ◽  
Юрий Иванович Торба

In the process of developing a numerical study method of a flat flow around a snap line with a rotary diaphragm, calculations were made at various degrees of opening the rotary diaphragm δ and pressure drops on the grille. As a result of calculations, for small degrees, the opening of the rotary diaphragm, complex patterns of the flow were obtained, in the inter-tube channel of the nozzle apparatus. The article presents some results of a numerical study of the supersonic flow in the channel of the nozzle apparatus with the degree of opening the rotary diaphragm δ = (0.15 ÷ 0.3). Modeling and calculating the flow of the working fluid is made using the Fluent software package. The construction of the calculated areas bounded by one inter-tube channel, for varying degrees of opening the diaphragm of the nozzle apparatus. Grids are built for calculated areas. Calculations were carried out for δ = (0.15 ÷ 0.3) and with different degrees of pressure drop on the grille. As a result of the calculations performed, the flow patterns in the inter-tube canal were obtained and behind it, and the distribution of the coefficients of the kinetic energy loss on the lattice front at various degrees of the discovery of the diaphragm at the inlet in the nozzle apparatus. According to the results of the work carried out, the following conclusions can be drawn: the structure of the stream in the inter-tube channel, the nozzle apparatus at small detection of the discovery, is divided into two parts: a supersonic core of the spawth of the blade and a dialing, the vortex zone at the back of the blade; The supersonic thread kernel at certain values of the relative pressure drop on the lattice (or the air flow values through the grid) is separated by shock fronts into several areas; The coefficients of energy loss, for small degrees of discovery, decrease with a decrease in the relative pressure drops (with an increase in the rate of expiration of the flow from the nozzle lattice); The greatest contribution to the magnitude of the loss of kinetic energy is introduced by a vortex zone in the inter-tube channel, and not wave phenomena in the core of the flow; Optimization of the flow part of the nozzle apparatus must be carried out in order to reduce areas with vortex flow. The results obtained in this work will be used to develop a methodology for a numerical study of the spatial flow around the nozzle lattices with rotary diaphragms.


2021 ◽  
Vol 1 (1(57)) ◽  
pp. 39-43
Author(s):  
Vadim Yaris ◽  
Ivan Kuzyayev ◽  
Valeriy Nikolsky ◽  
Viktor Ved ◽  
Chlens Peter ◽  
...  

The object of research is a mathematical model of a new design of a vortex heat generator with translational-rotational flow in a variable geometry working space. One of the most problematic areas in the development of new and promising designs of heat generators by the method of physical modeling is the search for its optimal operating-technological and instrumental-design parameters. The implementation of a preliminary analysis of such structures by the method of mathematical modeling will significantly reduce the time and material costs for the development of promising designs of heat generators. The studies of the design of the new vortex heat generator, carried out by the method of mathematical modeling, made it possible to determine the range of its operation, to evaluate the operating-technological and hardware-design parameters that affect the efficiency of work. Studies of the hydrodynamics of the translational-rotational motion of a viscous fluid flow in the working space of a new vortex heat generator with a variable geometry of the working space made it possible to determine the critical velocity and pressure, the influence of the geometric parameters of the device on the generation of vortices that promote cavitation. Model studies were carried out in the range of fluid load changes in the range from 0.001 m3/s to 0.01 m3/s. The study of changes in the velocity field in the channels was carried out for the geometry of the channel with a taper angle  from 0° to 25°. The width of the working channel of the space Wn varied in the range of 130, 70 and 40 mm. It has been established that a good axial symmetry and smoothness of the coolant flow in the vortex zone along the swirler screw provides the coolant inlet through a nozzle with a rectangular cross-section. The dependence of the influence of the flow area of the nozzle for introducing the coolant into the vortex zone on the energy efficiency of the vortex apparatus as a whole is found experimentally. The research carried out makes it possible to design vortex heat generators with geometric parameters that meet modern energy efficiency requirements. The geometry of the swirler screw is determined, which increases the efficiency of the heat generator by 35 % in comparison with similar designs of vortex heat generators given in the literature.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chuanbo Li ◽  
Yongzhi Ning ◽  
Taihong Yan ◽  
Weifang Zheng

Abstract The effects of feeding location, stirring speed and apparent average residence time on oxalate crystals size and distribution, tackiness of the product on the walls of reactor and stirring paddle were investigated in a vortex continuous precipitator at 45 °C. The results showed agglomeration happened during nucleation and crystals growth of U(IV) oxalate. Both local supersaturations and agglomeration maked the particles size distribution of U(IV) oxalate from 10–100 µm and the average sizes 35–45 µm. On the other hand, when the nucleation process were controlled to happen in the forced vortex zone, two feeding locations: (a) both oxalic acid and U(IV) nitrate solution into the forced vortex zone, (b) oxalic acid into the free vortex and U(IV) nitrate solution into the forced vortex, tackiness of the crystals on the wall of the precipitator could be effectively avoided.


2021 ◽  
Vol 188 ◽  
pp. 107491
Author(s):  
Arslan Ziganshin ◽  
Konstantin Logachev ◽  
Kamilla Batrova
Keyword(s):  

2021 ◽  
Vol 264 ◽  
pp. 03037
Author(s):  
Masharif Bakiyev ◽  
Azat Khalimbetov ◽  
Otanazar Matkarimov

The areas of the foothill rivers are distinguished by large bottom slopes reaching 0.004, with increased kinetics of the flow of more than 0.15, and by gravel-pebble sediments of the river bed and flow. An analysis of the studies performed on the regulatory structures showed that the bulk of them was performed for the conditions of lowland rivers. In the article, a design of a combined dam with a through part of tetrahedrons is proposed. The experiments were conducted in a flume with a rigid bottom and with a variable slope of. The modeling was performed according to Froude in a self-similar area. Experimental studies revealed the presence of two flow spreading modes depending on the bottom slope: a “calm” mode at iД < iκр and a “critical” mode at iД > iκр These modes are mainly influenced by the degree of constraint and the Froude number. In the previous articles, a solution to the problem was provided for the case iД < iκр, which covers the foothill sections of rivers at a “calm” mode. At a further increase in the degree of flow constraint n > 0.3 and the Froude number Fr > 0.15, a “critical mode” is observed. Here, a solution to the problem for this case is given. The problem, in this case, differs from the previously considered one by non-uniform distribution of velocities in the weakly disturbed core, a significant reduction in the length of the vortex zone; the vertical compression of the flow continues to the end of the vortex zone. The versatility of the velocity distribution in the zones of weakly disturbed core and intense turbulent mixing is experimentally substantiated. With theoretical studies, using the basic equations of applied mechanics, a method for calculating the velocity field was developed, and the planned dimensions of the vortex zones were established. The comparison with experimental data showed satisfactory agreement.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1197
Author(s):  
Qichao Tian ◽  
Hanliang Liang ◽  
Yang Zhao ◽  
Honghao Ma ◽  
Zhaowu Shen ◽  
...  

The FeCoNiCrAl0.1 high entropy alloys (HEAs) and pure copper (Cu) composite plates were successfully fabricated by the explosive welding technique using two different gap distances. The interfacial microstructure, elemental distribution, grain structure of vortex zone and hardness were characterized using optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), nanoindentation and micro-hardness tester. The explosive weldability window was calculated to verify the weldability of HEAs and Cu. The results indicated that the Cu/HEA composites presented typical wavy structures without visible defects and have an excellent bonding quality. The elements mixed and formed intermetallic compounds at the vortex zones. The grains near the vortex zones showed strong deformation, and phase transformation occurred. Compared with the matrix metals, the hardness of Cu and HEAs increased near the welding interface and sharply increased to 375 HV near the vortex zone.


2019 ◽  
Vol 74 (5) ◽  
pp. 514-519
Author(s):  
I. A. Znamenskaya ◽  
I. V. Mursenkova ◽  
D. S. Naumov ◽  
N. N. Sysoev

2019 ◽  
Vol 23 (8) ◽  
pp. 4-7
Author(s):  
G.I. Pavlov ◽  
P.V. Nakorjakov ◽  
O.R. Sitnikov ◽  
A.I. Akhmetshina

This article describes a method of burning fuel without spraying through the nozzle due to the conversion of the liquid fraction in the vapor phase in vortex flow. When this occurs the flammable liquid in the vortex zone is carried out not through a calibrated orifice (nozzle), and the tube having a diameter of several tens of times larger than the nozzle diameter. This principle is equally effective can be burned as fuel commodity and pitched liquid combustible waste without fine purification.


Sign in / Sign up

Export Citation Format

Share Document