scholarly journals A Mass-Temperature Decoupled Discretization Strategy for Large-Scale Molecular-Level Kinetic Model

Author(s):  
Zhengyu Chen ◽  
Dong Guan ◽  
Xiaojie Zhang ◽  
Ying Zhang ◽  
Suoqi Zhao ◽  
...  

The molecular conversion of complex mixture involves a large number of species and reactions. The corresponding kinetic model is consist of a series of ordinary differential equations (ODEs) with severe stiffness, leading to an exponentially growing computational time. To reduce the computational time, we proposed a mass-temperature decoupled discretization strategy for a large-scale molecular-level kinetic model. The method separates the mass balance and heat balance calculations in the rigorous adiabatic reactor model and divided the reactor into several isothermal segments. After discretization, the differential equations for heat balance can be replaced by algebraic equations between nodes. We used a molecular-level diesel hydrotreating kinetic model as the case to validate the proposed method. We investigated the effects of temperature estimation methods and node number on the accuracy of the model. A good agreement between the discretization model and rigorous model was observed while the computational time was significantly shortened

2021 ◽  
pp. 117348
Author(s):  
Zhengyu Chen ◽  
Dong Guan ◽  
Xiaojie Zhang ◽  
Ying Zhang ◽  
Suoqi Zhao ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 367
Author(s):  
Zhen Zheng ◽  
Bingting Zha ◽  
Yu Zhou ◽  
Jinbo Huang ◽  
Youshi Xuchen ◽  
...  

This paper proposes a single-stage adaptive multi-scale noise filtering algorithm for point clouds, based on feature information, which aims to mitigate the fact that the current laser point cloud noise filtering algorithm has difficulty quickly completing the single-stage adaptive filtering of multi-scale noise. The feature information from each point of the point cloud is obtained based on the efficient k-dimensional (k-d) tree data structure and amended normal vector estimation methods, and the adaptive threshold is used to divide the point cloud into large-scale noise, a feature-rich region, and a flat region to reduce the computational time. The large-scale noise is removed directly, the feature-rich and flat regions are filtered via improved bilateral filtering algorithm and weighted average filtering algorithm based on grey relational analysis, respectively. Simulation results show that the proposed algorithm performs better than the state-of-art comparison algorithms. It was, thus, verified that the algorithm proposed in this paper can quickly and adaptively (i) filter out large-scale noise, (ii) smooth small-scale noise, and (iii) effectively maintain the geometric features of the point cloud. The developed algorithm provides research thought for filtering pre-processing methods applicable in 3D measurements, remote sensing, and target recognition based on point clouds.


2019 ◽  
Author(s):  
Liqun Cao ◽  
Jinzhe Zeng ◽  
Mingyuan Xu ◽  
Chih-Hao Chin ◽  
Tong Zhu ◽  
...  

Combustion is a kind of important reaction that affects people's daily lives and the development of aerospace. Exploring the reaction mechanism contributes to the understanding of combustion and the more efficient use of fuels. Ab initio quantum mechanical (QM) calculation is precise but limited by its computational time for large-scale systems. In order to carry out reactive molecular dynamics (MD) simulation for combustion accurately and quickly, we develop the MFCC-combustion method in this study, which calculates the interaction between atoms using QM method at the level of MN15/6-31G(d). Each molecule in systems is treated as a fragment, and when the distance between any two atoms in different molecules is greater than 3.5 Å, a new fragment involved two molecules is produced in order to consider the two-body interaction. The deviations of MFCC-combustion from full system calculations are within a few kcal/mol, and the result clearly shows that the calculated energies of the different systems using MFCC-combustion are close to converging after the distance thresholds are larger than 3.5 Å for the two-body QM interactions. The methane combustion was studied with the MFCC-combustion method to explore the combustion mechanism of the methane-oxygen system.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 955
Author(s):  
Alamir Elsayed ◽  
Mohamed El-Beltagy ◽  
Amnah Al-Juhani ◽  
Shorooq Al-Qahtani

The point kinetic model is a system of differential equations that enables analysis of reactor dynamics without the need to solve coupled space-time system of partial differential equations (PDEs). The random variations, especially during the startup and shutdown, may become severe and hence should be accounted for in the reactor model. There are two well-known stochastic models for the point reactor that can be used to estimate the mean and variance of the neutron and precursor populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we named the Langevin point kinetic model (LPK). The new LPK model combines the advantages, accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in detail, and many test cases are analyzed to investigate the new model compared with the results in the literature.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mujeeb ur Rehman ◽  
Dumitru Baleanu ◽  
Jehad Alzabut ◽  
Muhammad Ismail ◽  
Umer Saeed

Abstract The objective of this paper is to present two numerical techniques for solving generalized fractional differential equations. We develop Haar wavelets operational matrices to approximate the solution of generalized Caputo–Katugampola fractional differential equations. Moreover, we introduce Green–Haar approach for a family of generalized fractional boundary value problems and compare the method with the classical Haar wavelets technique. In the context of error analysis, an upper bound for error is established to show the convergence of the method. Results of numerical experiments have been documented in a tabular and graphical format to elaborate the accuracy and efficiency of addressed methods. Further, we conclude that accuracy-wise Green–Haar approach is better than the conventional Haar wavelets approach as it takes less computational time compared to the Haar wavelet method.


2019 ◽  
Vol 35 (14) ◽  
pp. i417-i426 ◽  
Author(s):  
Erin K Molloy ◽  
Tandy Warnow

Abstract Motivation At RECOMB-CG 2018, we presented NJMerge and showed that it could be used within a divide-and-conquer framework to scale computationally intensive methods for species tree estimation to larger datasets. However, NJMerge has two significant limitations: it can fail to return a tree and, when used within the proposed divide-and-conquer framework, has O(n5) running time for datasets with n species. Results Here we present a new method called ‘TreeMerge’ that improves on NJMerge in two ways: it is guaranteed to return a tree and it has dramatically faster running time within the same divide-and-conquer framework—only O(n2) time. We use a simulation study to evaluate TreeMerge in the context of multi-locus species tree estimation with two leading methods, ASTRAL-III and RAxML. We find that the divide-and-conquer framework using TreeMerge has a minor impact on species tree accuracy, dramatically reduces running time, and enables both ASTRAL-III and RAxML to complete on datasets (that they would otherwise fail on), when given 64 GB of memory and 48 h maximum running time. Thus, TreeMerge is a step toward a larger vision of enabling researchers with limited computational resources to perform large-scale species tree estimation, which we call Phylogenomics for All. Availability and implementation TreeMerge is publicly available on Github (http://github.com/ekmolloy/treemerge). Supplementary information Supplementary data are available at Bioinformatics online.


2013 ◽  
Vol 117 (1195) ◽  
pp. 871-895 ◽  
Author(s):  
J. Mariens ◽  
A. Elham ◽  
M. J. L. van Tooren

Abstract Weight estimation methods are categorised in different classes based on their level of fidelity. The lower class methods are based on statistical data, while higher class methods use physics based calculations. Statistical weight estimation methods are usually utilised in early design stages when the knowledge of designers about the new aircraft is limited. Higher class methods are applied in later design steps when the design is mature enough. Lower class methods are sometimes preferred in later design stages, even though the designers have enough knowledge about the design to use higher class methods. In high level multidisciplinary design optimisation (MDO) fidelity is often sacrificed to obtain models with shorter computation times. There is always a compromise required to select the proper weight estimation method for an MDO project. An investigation has been performed to study the effect of using different weight estimation methods, with low and medium levels of fidelity, on the results of a wing design using multidisciplinary design optimisation techniques. An MDO problem was formulated to design the wing planform of a typical turboprop and a turbofan passenger aircraft. The aircraft maximum take-off weight was selected as the objective function. A quasi-three-dimensional aerodynamic solver was developed to calculate the wing aerodynamic characteristics. Five various statistical methods and a quasi-analytical method are used to estimate the wing structural weight. These methods are compared to each other by analysing their accuracy and sensitivity to different design variables. The results of the optimisations showed that the optimum wing shape is affected by the method used to estimate the wing weight. Using different weight estimation methods also strongly affects the optimisation convergence history and computational time.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1633-1648 ◽  
Author(s):  
Adam Arkin ◽  
John Ross ◽  
Harley H McAdams

Abstract Fluctuations in rates of gene expression can produce highly erratic time patterns of protein production in individual cells and wide diversity in instantaneous protein concentrations across cell populations. When two independently produced regulatory proteins acting at low cellular concentrations competitively control a switch point in a pathway, stochastic variations in their concentrations can produce probabilistic pathway selection, so that an initially homogeneous cell population partitions into distinct phenotypic subpopulations. Many pathogenic organisms, for example, use this mechanism to randomly switch surface features to evade host responses. This coupling between molecular-level fluctuations and macroscopic phenotype selection is analyzed using the phage λ lysis-lysogeny decision circuit as a model system. The fraction of infected cells selecting the lysogenic pathway at different phage:cell ratios, predicted using a molecular-level stochastic kinetic model of the genetic regulatory circuit, is consistent with experimental observations. The kinetic model of the decision circuit uses the stochastic formulation of chemical kinetics, stochastic mechanisms of gene expression, and a statistical-thermodynamic model of promoter regulation. Conventional deterministic kinetics cannot be used to predict statistics of regulatory systems that produce probabilistic outcomes. Rather, a stochastic kinetic analysis must be used to predict statistics of regulatory outcomes for such stochastically regulated systems.


Author(s):  
M. Leuchtenmueller ◽  
C. Legerer ◽  
U. Brandner ◽  
J. Antrekowitsch

AbstractEffective recycling of zinc-containing industrial wastes, most importantly electric arc furnace dust, is of tremendous importance for the circular economy of the steel and zinc industry. Herein, we propose a comprehensive kinetic model of the combined carbothermic and metallothermic reduction of zinc oxide in a metal bath process. Pyro-metallurgical, large-scale lab experiments of a carbon-saturated iron melt as reduction agent for a molten zinc oxide slag were performed to determine reaction constants and accurately predict mass transfer coefficients of the proposed kinetic model. An experimentally determined kinetic model demonstrates that various reactions run simultaneously during the reduction of zinc oxide and iron oxide. For the investigated slag composition, the temperature-dependent contribution of the metallothermic zinc oxide reduction was between 25 and 50 pct of the overall reaction mechanism. The mass transfer coefficient of the zinc oxide reduction quadrupled from 1400 °C to 1500 °C. The zinc recovery rate was > 99.9 pct in all experiments.


Sign in / Sign up

Export Citation Format

Share Document