separation density
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

Separations ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 242
Author(s):  
Xuchen Fan ◽  
Chenyang Zhou

Coal is the dominant energy resource in China. With the Chinese policy of committing to reducing peak carbon dioxide emissions and achieving carbon neutrality, coal separation has recently become a hot topic, especially the fluidized separation of fine particles. In this study, micron-sized particles were introduced to ameliorate the properties of the traditional fluidized bed. The expansion characteristics of the micron-sized-particle-dense medium were explored. A bed expansion prediction model of the micron-sized-particle-dense medium was established, and the prediction error was about 10%, providing a theoretical basis for understanding the distribution characteristics of the bed. This model also helped predict the bed density in the presence of a micron-sized-particle-dense medium, and the prediction accuracy was between 85% and 92%, providing a theoretical basis for selecting and popularizing fluidized beds for industrial separation.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1699
Author(s):  
JianJun Huang ◽  
Lixin Jiao ◽  
Yu Yang ◽  
Yaqiang Dong ◽  
Yiqun Zhang ◽  
...  

The effect of different particle size distribution of Fe-6.5 wt%Si powder on the microstructure and soft magnetic properties of the corresponding soft magnetic powder cores (SMPCs) was investigated. By optimizing particle size distribution, the density of SMPCs increased and the total core loss significantly decreased. According to the result of loss separation, density of SMPCs is inversely proportional to hysteresis loss, while with increasing the content of the fine particles, the eddy current loss significantly decreased. It was found that with magnetic powder of particle size-grading as 10%, 10%, 60%, and 20% for particles with size between −75 to +38, −38 to +23, −23 to +13, and −13 μm, respectively, the Fe-6.5 wt%Si SMPCs exhibit optimal comprehensive magnetic performances with the effective permeability of about 60, the percent permeability at 100 Oe is up to 70%, and the lowest core loss of 553 mW/cm3.


2019 ◽  
Vol 138 ◽  
pp. 188-194
Author(s):  
Cheng-an Zhang ◽  
Zhang-lei Zhu ◽  
Guo-yuan Gao ◽  
Pan-pan Fan ◽  
Min-qiang Fan

2016 ◽  
Vol 32 (3) ◽  
pp. 163-172
Author(s):  
Stanisław Cierpisz

Abstract The beneficiation process of fine coal in jigs consists of two phases: stratification of coal grains in the bed according to their density and then splitting the stratified material into the product and the discharged refuse. At first, during subsequent water pulsations induced by opening and closing of air valves, the stratification of coal grains takes place due to varied velocity of their upward and downward movement. Grains of low density migrate to upper layers and grains of high density migrate to lower layers of the bed. The material travels horizontally on a screen along the jig compartment with the flow of water. The stratification of grains due to their density is not perfect, because the velocity of their upward and downward movement depends in part on their diameter, shape and the way in which the material loosens within a given pulsation cycle. The distribution of coal density fractions in the bed, characterized by the imperfection factor I, has been investigated by many researchers. The imperfection factor I is defined as the ratio of the probable error Ep and the separation density ρ50 (I = Ep/ρ50). The distribution of coal density fractions for an ideal and a real stratification process was compared. The maximum mass of the product of the desired quality (ash content) can be achieved for the ideal process when the imperfection I = 0. The stratified bed is then, in the end part of the jig, split into the product which overflows the end wall of the compartment and the refuse (or middlings) discharged through the bottom gate. The separation density (cut point) is established by the tonnage of the discharged bottom product (opening of the discharge gate). The separation density depends also on the tonnage of raw coal feeding the jig, and its washability characteristics. The impact of variations in the separation density on product parameters has been analysed. The mass of the product is always greater when the separation density is constant over a given period of time – even if in spite of its variations the process renders the same average ash content. Hence, the conclusion is to stabilise the separation density at the desired value as accurately as possible. The analysis was performed for raw coal washed in a three-product jig at the separation densities of 1.5 and 1.8 g/cm3. Percent contents (in brackets) of density fractions in raw coal were: <1.35 g/cm3 (40%), 1.35–1.50 g/cm3 (12%), 1.50–1.65 g/cm3 (4%), 1.65–1.80 g/cm3 (4%), 1.80–1.95 g/cm3 (12%, >1.95 g/cm3 (30%) (average ash in raw coal was 35.5%). In the analysis, an increase in the imperfection by 0.02 resulted in the decrease of the product tonnage by ΔQc = 1.0%. In this case, separation densities were set to ensure the same ash content in products (for I = 0 the change in tonnage was accepted at ΔQc = 0). The simulation analysis presented in the paper focused on the impact that fluctuations in separation density have on the economic effects of a jig operation. The influence of the separation density fluctuations on the product tonnage turned out to be nonlinear; for ±0.04 g/cm3 (control system with the radiometric density meter) the decrease in the product tonnage was ca. 0.5 % and for ±0.12 g/cm3 it was ca. 5.0% (control system with a float). The above results indicate that the operation of a refuse discharge system in a jig plays an important role in the final results of coal separation process defined in terms of tonnage and quality of the product.


2016 ◽  
Vol 32 (2) ◽  
pp. 125-134
Author(s):  
Stanisław Cierpisz ◽  
Marek Kryca ◽  
Waldemar Sobierajski ◽  
Marian Gola

Abstract A new monitoring system based on the monitoring of natural radiation emitted by the material in the separation zone of a jig compartment has been developed and tested in parallel with a radiometric density meter and a conventional float. The authors investigated the correlation between the separation density monitored by the meter and the intensity of the natural radiation. The measuring head of the radiometric density meter consists of a 137Cs radiation source and a detector in the form of a scintillation counter. The signal from the detector is measured over a period of 0.15 s at the end of each cycle of pulsations (1.2 s) when the material is compressed. The control systems were installed in the second compartment of the OM20-type jig. The aim of control was to stabilise the separation density at desired values. The separation process was monitored by a radiometric density meter (RDM) to indicate changes in the separation density over a given period of time. The RDM was installed close to the upper edge of the product overflow wall to measure the density of the material separation layer reporting in half to the product and in half to the refuse. A conventional float, indicating the position of the heavy fraction in the bed, was used as a basic sensor in the control system. After first experiments the RDM replaced the float as a main sensor in the closed loop control. In the third experiment a new monitor, based on the measurement of the natural radiation emitted by the material (NRM) accumulating below the product overflow wall was used. A good correlation between the NRM indications and the RDM measurements indicates that the radiometric density meter RDM can be replaced effectively by the NRM, especially in control systems where separation density is stabilised at desired values.


2015 ◽  
Vol 25 (6) ◽  
pp. 969-973 ◽  
Author(s):  
Bo Lv ◽  
Zhenfu Luo ◽  
Bo Zhang ◽  
Yuemin Zhao ◽  
Chenyang Zhou ◽  
...  

2014 ◽  
Vol 986-987 ◽  
pp. 790-793
Author(s):  
Jie Zhang ◽  
Man Rong Xing ◽  
Wen Jie Li

Paper in view of the dense medium coal preparation process control, carefully study the density of heavy medium coal preparation control system of the internal structure, main characteristics, control laws and the design method. Open field bus control structure is adopted in the system, Siemens S7-300 programmable controller is responsible for control, executing agencies responsible for enforcing the orders of the PLC to control the related parameters. Through the practice, this control system is powerful, easy to operate, reliable performance, has certain theoretical significance and practical application value.


Sign in / Sign up

Export Citation Format

Share Document