scholarly journals Geographic variation in larval cold tolerance and exposure across the invasion front of a widely established forest insect

2021 ◽  
Author(s):  
Petra Hafker ◽  
Lily M Thompson ◽  
Dylan Parry ◽  
Jonathan A Walter ◽  
Kristine L Grayson

As the global climate changes, high and low temperature extremes can drive changes in species distributions. Across the range of a species, thermal tolerance can experience plasticity and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in the lower thermal tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from the climatically diverse invasion of the Eastern United States. In two chill coma recovery experiments, we recorded recovery time following a period of exposure to a non-lethal cold temperature. A third experiment quantified growth responses after chill coma recovery to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from cold climate populations recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature from cold snaps after spring hatching, but negative impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.

2021 ◽  
Author(s):  
Erica O’Neill ◽  
Hannah E. Davis ◽  
Heath A. MacMillan

AbstractThe thermotolerance-plasticity trade-off hypothesis predicts that ectotherms with greater basal thermal tolerance have a lower acclimation capacity. This hypothesis has been tested at both high and low temperatures but the results often conflict. If basal tolerance constrains plasticity (e.g. through shared mechanisms that create physiological constraints), it should be evident at the level of the individual, provided the trait measured is repeatable. Here, we used chill-coma onset temperature and chill-coma recovery time (CCO and CCRT; non-lethal thermal limits) to quantify cold tolerance of Drosophila melanogaster across two trials (pre- and post-acclimation). Cold acclimation improved cold tolerance, as expected, but individual measurements of CCO and CCRT in non-acclimated flies were not (or only slightly) repeatable. Surprisingly, however, there was still a strong correlation between basal tolerance and plasticity in cold-acclimated flies. We argue that this relationship is a statistical artefact (specifically, a manifestation of regression to the mean; RTM) and does not reflect a true trade-off or physiological constraint. Thermal tolerance trade-off patterns in previous studies that used similar methodology are thus likely to be impacted by RTM. Moving forward, controlling and/or correcting for RTM effects is critical to determining whether such a trade-off or physiological constraint truly exists.


2021 ◽  
Vol 288 (1964) ◽  
Author(s):  
Erica O'Neill ◽  
Hannah E. Davis ◽  
Heath A. MacMillan

The thermotolerance–plasticity trade-off hypothesis predicts that ectotherms with greater basal thermal tolerance have a lower acclimation capacity. This hypothesis has been tested at both high and low temperatures but the results often conflict. If basal tolerance constrains plasticity (e.g. through shared mechanisms that create physiological constraints), it should be evident at the level of the individual, provided the trait measured is repeatable. Here, we used chill-coma onset temperature and chill-coma recovery time (CCO and CCRT; non-lethal thermal limits) to quantify cold tolerance of Drosophila melanogaster across two trials (pre- and post-acclimation). Cold acclimation improved cold tolerance, as expected, but individual measurements of CCO and CCRT in non-acclimated flies were not (or only slightly) repeatable. Surprisingly, however, there was still a strong correlation between basal tolerance and plasticity in cold-acclimated flies. We argue that this relationship is a statistical artefact (specifically, a manifestation of regression to the mean; RTM) and does not reflect a true trade-off or physiological constraint. Thermal tolerance trade-off patterns in previous studies that used similar methodology are thus likely to be impacted by RTM. Moving forward, controlling and/or correcting for RTM effects is critical to determining whether such a trade-off or physiological constraint exists.


2019 ◽  
Vol 29 (6) ◽  
pp. 906-922 ◽  
Author(s):  
James A. Schrader ◽  
Diana R. Cochran ◽  
Paul A. Domoto ◽  
Gail R. Nonnecke

The popularity of grape (Vitis sp.) and wine production in the upper midwest region of the United States is increasing steadily. The development of several cold-climate, interspecific-hybrid grape cultivars (northern hybrids) since the 1980s has improved the probability of success for both new and established vineyards in this area of the country, but long-term data describing the performance of these cultivars in midwestern U.S. climates are needed to both aid growers in their choice of cultivars and to provide them with information about factors important in their management. We characterized the long-term winterhardiness and annual phenology of 12 cold-climate northern hybrid grape cultivars (two established cultivars, five newer cultivars, and five advanced selections) grown in a randomized and replicated field plot in central Iowa, an area that offers a warm growing season and very cold dormant season for grape culture. The established cultivars included in the study were Frontenac and St. Croix. The newer cultivars evaluated were Arandell, Corot noir, La Crescent, Marquette, and Petit Ami, and the advanced selections were MN 1189, MN 1200, MN 1220, MN 1235, and MN 1258. The grape trial was established in 2008, and vines were evaluated from 2011 through 2017 for annual timing of budbreak, bloom, veraison, and harvest, as well as winter survival of vines and primary buds. As a group, the northern hybrids in our trial showed good winterhardiness of vines but variable hardiness of primary buds across the six winters, which ranged from warmer than average to much colder than average. In Iowa climate, buds of northern hybrids were generally most vulnerable to cold temperature damage from late-winter (March) low-temperature events or from extreme midwinter low-temperature events. The bud hardiness of individual cultivars ranged from very hardy (Frontenac, Marquette, and MN 1235) to poor hardiness (Arandell, Corot noir, Petit Ami, and MN 1189), with all 12 cultivars showing good bud survival during Iowa winters that were warmer than average, but the less-hardy cultivars showing poor bud survival during winters that were colder than average. Evaluations of phenology revealed that heat accumulation measured in growing degree days with a threshold of 50 °F was not a reliable index for predicting the timing of annual developmental stages for the cultivars we tested. Our results indicate that northern hybrids rely on other factors in addition to heat accumulation for guiding annual development, and that factors such as photoperiod likely have a strong influence on phenological timing during seasons with unusual weather patterns. We determined that none of the cultivars were vulnerable to cold temperature damage to fruit before harvest in Iowa’s climate, but that three of the cultivars (Arandell, Marquette, and MN 1235) were highly vulnerable to shoot damage from spring freeze events, and four others (Corot noir, La Crescent, MN 1200, and MN 1220) were moderately vulnerable to cold damage to shoots in spring. An itemized summary of the relative hardiness, vulnerabilities, and timing of phenological stages of the 12 cultivars is provided to aid growers in selection and management of grape cultivars for Iowa climate. Based on hardiness and phenology, four of these cultivars (Frontenac, MN 1258, MN 1220, and MN 1200) have the lowest risk of issues related to cold temperatures.


1969 ◽  
Vol 47 (6) ◽  
pp. 553-562 ◽  
Author(s):  
A. J. F. Webster ◽  
A. M. Hicks ◽  
F. L. Hays

Heat production and thermal insulation were measured in three groups of sheep, control, outdoor, and indoor, which were exposed to the effects of season, cold climate, and cold temperature respectively. The experiment was for 24 weeks, from November 1967 to April 1968. Sheep in the control, outdoor, and indoor groups gained 16.2, 10.0, and 14.9 kg respectively. Average feed intake in both control and outdoor groups was 2.65 kg hay/100 kg sheep per day. Food intake was highest in the indoor group and was inversely related to ambient air temperature. Resting heat production was constant throughout in the control group but increased with time in the outdoor group. Resting heat production in indoor sheep was related to intensity of prior cold exposure. Wool growth and thermal insulation did not differ significantly between groups. Critical temperature for the outside group fell from −15 °C in week 4 to −35 °C in week 20. After these trials, all sheep were shorn. The heat production of the shorn indoor group at −30 °C was greater, and that of the outdoor group was less than that of the controls. The results suggest that, in sheep, acclimation to cold temperatures induces rapid, brief increases in resting heat production and summit metabolism. Acclimatization to cold climates slowly induces a persistent elevation in resting heat production, but appears to reduce the initial metabolic response to an intense cold stimulus.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 169 ◽  
Author(s):  
Anna Dreyer ◽  
Karl-Josef Dietz

Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate.


Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 53-66
Author(s):  
Samsul Rizal ◽  
Julfi Restu Amelia ◽  
Suharyono A S

Sinbiotic drinks have a very acidic taste, so it is necessary to add sucrose solution to get the best taste. This study aims to determine the effect of adding 65% (v/v) sucrose solution to changes in antibacterial activity of green grass jelly synbiotic drinks during storage in cold temperatures. The finished green grass jelly synbiotic product was given two different treatments, namely the product without the addition of sucrose solution and product with the addition of 10% (v/v) of 65% (b/v) sucrose solution. The product was stored for 28 days at a cold temperature of ± 10oC. Observations were carried out every 7 days for antibacterial activity, pH, total acid, and total lactic acid bacteria. Antibacterial activity was evaluated using the agar diffusion method against pathogenic bacteria including Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Eschericia coli. The results showed that the antibacterial activity, pH, and total lactic acid bacteria of green grass jelly synbiotic drinks both without and with the addition of 65% (b/v) sucrose as much as 10% (v/v) reduced during storage at cold temperatures, while total acid increases. There was no significant difference between the antibacterial activity and the characteristics of the green grass jelly synbiotic drink given 65% sucrose solution and without the addition of 65% sucrose solution. Thus the study concluded that the addition of 65% sucrose solution to increase the preference for the product did not significantly affect the change in antibacterial activity of the green grass jelly synbiotic beverage during storage in cold temperatures.


2020 ◽  
Author(s):  
Sonya Geange ◽  
Pieter Arnold ◽  
Alexandra Catling ◽  
Onoriode Coast ◽  
Alicia Cook ◽  
...  

<p>Extreme temperature events are increasing in frequency and intensity across the globe. These extremes, rather than averages, drive species evolution and determine survival by profoundly changing the structure and fluidity of cell membranes, altering enzyme function, and denaturing proteins. Given not only our dependence on agricultural crops and natural vegetation, but also the role of photosynthetic processes within the carbon and hydrological cycles, it is imperative to assess the state of our understanding of the potential impacts of extreme events on plants. Scaling responses from the molecular and organ level to ecosystem function is not without challenge however. There is vast literature on plant thermal tolerance research, but the body of literature is so large, the approaches so disparate and often siloed among disciplines, that research in this field risks floundering at a critical time. We conducted a systematic review of more than 21,500 studies spanning over 100 years of research that yielded almost 1,700 included studies on the tolerance of cultivated and wild land plants to both heat and cold. Our review indicates that most studies on thermal tolerance focus on the cold tolerance of cultivated species (52%) and only a trivial percentage of studies have considered both heat and cold tolerance of any given species (~5%). Combined heat and cold tolerance are important in areas where plants are exposed to extremes of both or may be in the future. This review illustrates the global distribution and concentrations of thermal tolerance studies and the diversity of thermal tolerance methods, ranging from molecular to biochemical, physiological and physical examinations, from transgenic model plants to agricultural and horticultural crops, to natural forest trees, shrubs, and grassland herbs. Critically, it also demonstrates that methods and metrics for assessing thermal tolerance are far from standardised, such that our potential to achieve mechanistic insight and compare across species and biomes is compromised. Without reconciling these issues, the scope for incorporating this critical ecological information into vegetation elements of land surface models may be limited. To aid this, we identify priorities for achieving efficient, reliable, and repeatable research across the spectrum of plant thermal tolerance. These priorities, including meta-analytical approaches and comparative experimental work, will not only further fundamental plant science, but will prove essential next steps if we are to integrate such diverse data on a critical plant functional trait into a usable metric within biogeochemical models.</p>


2006 ◽  
Vol 63 (3) ◽  
pp. 255-261 ◽  
Author(s):  
Renata Pereira da Cruz ◽  
Sandra Cristina Kothe Milach ◽  
Luiz Carlos Federizzi

Cold tolerance of rice (Oryza sativa L.) during the reproductive stage is important to guarantee high yield under low temperature environments. Field selection, however, does not allow identification of adequate tolerance sources and limits selection of segregating lines due to variable temperature. The objective of this study was to devise methods for distinguishing rice genotypes as to their cold tolerance at the reproductive stage when evaluated under controlled temperature. The effect of cold temperatures was investigated in six rice genotypes at 17°C for varying length of time (three, five, seven and ten days) at two reproductive stages (microsporogenesis and anthesis). Cold tolerance was measured as the percentage of reduction in panicle exsertion and in spikelet fertility. Evaluating cold tolerance through the reduction in panicle exsertion did not allow for the distinction between cold tolerant from cold sensitive genotypes and, when the reduction in spikelet fertility was considered, a minimum of seven days was required to differentiate the genotypes for cold tolerance. Genotypes were more sensitive to cold at anthesis than at microsporogenesis and, as these stages were highly correlated, cold screening could be performed at anthesis only, since it is easier to determine. Rice cold tolerance at the reproductive stage may be characterized by the reduction in spikelet fertility due to cold temperature (17°C) applied for seven days at anthesis.


2019 ◽  
Vol 48 (3) ◽  
pp. 641-648 ◽  
Author(s):  
Zinan Wang ◽  
Yan Chen ◽  
Rodrigo Diaz

Abstract Physiological limits of non-native species to environmental factors are critical for their establishment and spread in the adventive range. The crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), is a major pest of crapemyrtles. Despite concerns on its rapid spread, there is a lack of information on potential distribution range of this scale in the United States. To understand this scale’s distribution potential, its thermal tolerance was evaluated using higher and lower thermal limits. Exposure time leading to 50 and 90% mortality (Lt50 and Lt90) at extreme low or high temperatures were measured under controlled conditions. A model was then built to fit temperature data of cold fronts from 2001 to 2016 and to calculate potential mortalities along latitudes. Isothermal lines delineated at 90% mortality were defined as the northern limits. Modeling results suggested that A. lagerstroemiae nymphs collected in summer could tolerate heat; however, they were more susceptible to cold temperatures. Laboratory assays suggested that cold tolerance of A. lagerstroemiae nymphs varied from summer to winter. For example, SCP of nymphs collected in summer was higher than those collected in fall (−21 vs. −27°C), and the exposure time leading to Lt90 at 0°C was also different, which were 8 versus 50 h comparing nymphs collected in summer versus fall. Our prediction suggested that A. lagerstroemiae is likely to be limited by cold temperatures along the 43° N latitude. Based on these results, integrated management strategies can be developed for A. lagerstroemiae within the predicted range.


2019 ◽  
Vol 374 (1778) ◽  
pp. 20190036 ◽  
Author(s):  
Jennifer Sunday ◽  
Joanne M. Bennett ◽  
Piero Calosi ◽  
Susana Clusella-Trullas ◽  
Sarah Gravel ◽  
...  

Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis . Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.


Sign in / Sign up

Export Citation Format

Share Document