scholarly journals In Situ Burn Testing of Weathered and Emulsified Crude Oils

Author(s):  
Christopher J. Pfützner ◽  
Steven G. Tuttle ◽  
Thomas N. Loegel ◽  
Iwona Leska ◽  
Brian T. Fisher

ABSTRACT This paper investigates the ignitability and effectiveness of burning crude oil spills at sea with respect to the type of oil, weathering time, and seawater emulsion content. In the event of an oil or fuel spill at sea, in situ burning can be a practical method of removing the oil and preventing it from reaching vulnerable coastlines. However, the specific chemistry of the oil and its resulting behavior dictates how well this method works. In order to understand this behavior, Santa Barbara Channel crude oils were tested and burned in combinations of fresh, weathered, and seawater-emulsified at discrete ratios. A cone calorimeter was used to monitor time to ignition, mass loss, heat release rate, and smoke production for laboratory-scale burn tests. Weathering generally increased ignition time, but also changed the miscibility with water; this changed both heat released and burn efficiency. Emulsions with seawater fractions below approximately 20 % were found to improve the heat release rate and burn efficiency compared to oil-only burns; suggesting that some water emulsification can benefit oil burning. The results indicate that a targeted approach to the type of oil and degree of emulsification can expand the window of opportunity for in situ oil burns.

2017 ◽  
Vol 898 ◽  
pp. 2399-2404 ◽  
Author(s):  
Jin Mei Li ◽  
Jia Qing Zhang ◽  
Qiang Li ◽  
Zi Dong Guo

To evaluate the fire performance of the cable in service, the ignition time, heat release rate and insulation failure parameters of the accelerated thermal aging cable on stimulated fire condition were studied. The results show that, the extended ignition time and decreasing peak of heat release rate of the cable in the early stage of aging are the addictive including the lubricant, plasticizer and anti-oxygen. In the aggravating of thermal aging, labile materials with low heating value will be exhausted, while the thermal stability of insulation sheath material decreases, its corresponding ignition time will start to shorten and initial peak of heat release rate will start to rise. The insulation failure temperature of the cable is related with the decomposition temperature of insulation materials of the cable by heating. In each aging stage, the decomposition temperatures of insulation materials by heating are all lower than the insulation failure temperature of the cable for about 10°C. The reason for the insulation failure of the cable is that the ambient heat , gives rise to the decomposition by heating of internal insulation materials of the cable through sheath materials finally under the thermal transmission effect.


Author(s):  
Z. F. Zhao ◽  
J. Gou

In recent years, more severe requirement of budget and safety from industrial fields, especially space exploration and defense field, demand a new class of materials whose characteristics can satisfy both various engineering requirement and strict safety standard. The latter demands materials to have good thermal properties and significantly improved fire retardant property. In this research, multifunctional materials with layered structures are made from polyester resin, glass fiber mats and carbon nanofibers (CNFs). CNFs are added to the resin component of the composite laminates as additives in pulverised form and carbon nanofiber paper sheets (CNFS), respectively. Their flammability behaviors are investigated with cone calorimeter under well-controlled combustion conditions. And their heat release rate and other test parameters are compared and discussed, such as ignition time, heat release rate (HRR), peak heat release rate (PHRR), and so on. Although its PHRR is sharply increased to higher level for CNFS enforced composite laminates, its HRR curve is lowered greatly in most flaming time. Therefore, the pre-incorporated CNFS may act as an excellent insulator and mass transport barrier, improving the flame retardant property.


2018 ◽  
Vol 8 (11) ◽  
pp. 2329 ◽  
Author(s):  
Mingyi Chen ◽  
Jiahao Liu ◽  
Ouyang Dongxu ◽  
Shuchao Cao ◽  
Zhi Wang ◽  
...  

To better understand the fire risk of primary lithium batteries, the combustion properties of different numbers of primary lithium batteries were investigated experimentally in this work. Based on the t2 fire principle and total heat release results from the experiments, a simplified analysis was developed to predict the fire hazard, and especially the heat release rate, of primary lithium batteries. By comparing the experiment and simulation results, the simulation line agrees well with the heat release rate curve based on the oxygen consumption measurements of a single primary lithium battery. When multiple batteries are burned, each battery ignites at different times throughout the process. The ignition time difference parameter is introduced into the simulation to achieve similar results as during multiple batteries combustion. These simulation curves conform well to the experimental curves, demonstrating that this heat release rate simulation analysis is suitable for application in batteries fires.


2018 ◽  
Vol 211 ◽  
pp. 972-978 ◽  
Author(s):  
Bo-si Zhang ◽  
Jia-qing Zhang ◽  
Qiang Li ◽  
Liu-fang Wang ◽  
Hui Xie ◽  
...  

2011 ◽  
Vol 332-334 ◽  
pp. 1335-1338
Author(s):  
Shu Gan Li ◽  
Xiao Ning Jiao ◽  
Qing Long Jia

This paper demonstrates the combustibility of PI needle punched nonwovens by Cone Calorimeter. Ignition parameter, heat release parameters, smoke and toxicity parameters and mass loss parameters of the fabric were obtained from it. It was found that ignition time is 38 s; the peak of heat release rate is 65 kW/m2; total heat release is 7 MJ/m2; smoke release rate is 1.5 L/s; smoke factor is 1.3 MW/m2 and mass lose rate is 73.3%. Therefore the results show that PI needle punched nonwovens has excellent fire-resistance performance.


2020 ◽  
Vol 1 ◽  
pp. 14-20
Author(s):  
Michael Horváthová ◽  
Linda Makovická Osvaldová

This paper examines three types of natural insulation materials, such as fiberboard, hemp and straw, from the point of view of fire safety. Cellulose-based materials allow a wide range of applications when used for insulation and weatherproofing of buildings, in particular floors, roofs, ceilings, attics, sound barriers, etc. The use of these materials is increasing in ecological constructions as well as for weatherproofing wood-based structures. In terms of fire safety requirements, the question is: Which insulating material is the safest in terms of fire propagation? The article focuses on natural products used as external insulation systems which are covered by a facade plaster. Each type of insulation is briefly described in terms of its composition, use, and production process. We describe the process of preparation of samples as well as the testing and measurement procedures. Three tests were carried out for each type of material. For a more objective evaluation, results were averaged. The results of the cone calorimeter were used to obtain data for comparison. The aim is to clarify the behavior of the natural insulating material with regard to the heat release rate, ignition time, burning duration, and maximum heat release rate. These are the essential parameters for comparison. The values were compared to determine the safest material from the point of view of fire safety.


2011 ◽  
Vol 477 ◽  
pp. 175-184
Author(s):  
Qing Qing Ye ◽  
Xiao Qian Qian ◽  
Jun Ying Lai

The environmental fire retardant mentioned in this paper was compounded of disodium octaborate tetrahydrate and silicon dioxygen(SiO2)gels. Specimens of Chinese fir were impregnated with the compound by pressure and its fire retardant performance was studied. Results showed that, the anti-loss performance of disodium octaborate tetrahydrate was improved obviously. Compared with the untreated specimen, total heat release of the treated specimens decreased by 44.5% on average, while heat release rate decreased by 50.85% on average and ignition time prolonged obviously, which indicates that this compound possess good fire retardancy effect


2014 ◽  
Vol 501-504 ◽  
pp. 2415-2418
Author(s):  
Yan Ying Xu ◽  
Ruo Jun Wang ◽  
Jian Chen ◽  
Lu Chao Li

The combustion performance of engineered wood flooring and intensive composite floor under the different radiation heat flux were experimented by cone calorimeter. Fire parameters were measured including the ignition time and heat release rate. Experimental results show that the ignition time of engineered wood flooring is much lower than intensive composite floor, and the ignition time are decreased with the increase of radiation heat flux. The heat release rate (HRR) curve has two peaks under the same radiation heat flux, and the first peak of the heat release rate of engineered wood flooring occurs significantly earlier than intensive composite floor. The heat release rate is increased and the first peak significantly ahead of time with the increase of the radiation intensity


2019 ◽  
Vol 118 ◽  
pp. 01034
Author(s):  
Guoan Zhang ◽  
Lingling Wei ◽  
Junhao Gao ◽  
Tingting Qiu ◽  
Rongnan Yuan ◽  
...  

Polyvinyl chloride foam (PVC) is widely used as the wall materials of the high-speed train. The combustion characteristics of PVC foam under the heat fluxes of 20-60 kW/m2 are investigated by fire Propagation Apparatus (FPA). The results show that the ignition time of PVC foam decreases with the increase of heat flux. The peak of heat release rate, mass loss rate and smoke production rate increase with the increase of heat flux. Under the condition of 60 kW/m2, the heat release rate has the peak value of 109.10 kW/m2. The research on the combustion characteristics of the PVC can be used to analyse the fire risk of the train and guide the formulation of safety measures.


2012 ◽  
Vol 174-177 ◽  
pp. 375-379
Author(s):  
Yu Bo Chai ◽  
Jun Liang Liu ◽  
Zhen Xing

In this study, Melamine-methanol-formaldehyde-urea (MMFU) resin and the mixture of MMFU/boric acid/borax (MBB) were used as the modification solutions to impregnate wood from poplar plantation. The combustion performance of the wood before and after impregnation treatment was investigated by using the oxygen index apparatus and cone calorimeter. Results showed that the oxygen index of the MMFU and MBB treated wood both increased. Compared with the untreated wood, the MMFU and MBB treatment significantly delayed the ignition time and the appearance of peak value of the heat release rate (HRR) during the combustion. The MMFU and MBB treatment also reduced the heat release rate (HRR), total heat release (THR), mass loss rate (MLR), generation rate of carbon monoxide (GCO) as well as total smoke release (TSR) significantly. Both MMFU and MBB exhibited good effect of smoke suppression on wood, while MBB had better flame retardancy than MMFU. Boric acid/borax exerted excellent synergistic effect of fire resistance on MMFU.


Sign in / Sign up

Export Citation Format

Share Document