scholarly journals Study on the wetting behavior between oil droplets and kaolinite substrate based on interaction force measurement and high-speed dynamic visualization

2022 ◽  
Vol 46 ◽  
pp. 100585
Author(s):  
Junchao Wang ◽  
Yijun Cao ◽  
Yaowen Xing ◽  
Xiahui Gui ◽  
Guosheng Li
2009 ◽  
Vol 79-82 ◽  
pp. 7-10 ◽  
Author(s):  
Ying Song ◽  
Yan Liang Du ◽  
Bao Chen Sun

Measurement of wheel/rail contact forces is of importance. Traditional methods for wheel/rail interaction force measurement all need strain gauges on wheel sets and/or rails. Because strain gauges have the performances of zero-drift, poor anti-interference property and instability of test system, they can’t meet wheel/rail force test requirements in high-speed and heavy haul railways. A new method based on PVDF piezoelectric sensing technology is presented for the test of vertical and horizontal wheel/rail force in this paper. Firstly, based on the wheel/rail interaction characteristics, the restriction condition of track and strain sensing principle of PVDF films, principle for measuring vertical and lateral wheel/rail interaction forces is proposed. Then a series of tests were carried out to compare the performance of PVDF strain sensors with the one of strain gauges. The results show that the PVDF strain sensor has better reliability in wheel/rail force monitoring. Finally numerical analysis by Finite Element Method has been carried out to verify the feasibility of the method presented in this paper.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Soumya Ranjan Nanda ◽  
Sumit Agarwal ◽  
Vinayak Kulkarni ◽  
Niranjan Sahoo

Current investigations solely focus on application of an impulse facility in diverse area of high-speed aerodynamics and structural mechanics. Shock tube, the fundamental impulse facility, is specially designed and calibrated for present objectives. Force measurement experiments are performed on a hemispherical test model integrated with the stress wave force balance. Similar test model is considered for heat transfer measurements using coaxial thermocouple. Force and heat transfer experiments demonstrated that the strain gauge and thermocouple have lag time of 11.5 and 9 microseconds, respectively. Response time of these sensors in measuring the peak load is also measured successfully using shock tube facility. As an outcome, these sensors are found to be suitable for impulse testing. Lastly, the response of aluminum plates subjected to impulsive loading is analyzed by measuring the in-plane strain produced during deformation. Thus, possibility of forming tests in shock is also confirmed.


2021 ◽  
Vol 157 (A1) ◽  
Author(s):  
T Arnold ◽  
J Lavroff ◽  
M R Davis

Trim tabs form an important part of motion control systems on high-speed watercraft. By altering the pitch angle, significant improvements in propulsion efficiency can be achieved by reducing overall resistance. For a ship in heavy seas, trim tabs can also be used to reduce structural loads by changing the vessel orientation in response to encountered waves. In this study, trials have been conducted in the University of Tasmania hydraulics laboratory using a closed- circuit water tunnel to measure model scale trim tab forces. The model scale system replicates the stern tabs on the full- scale INCAT Tasmania 112 m high-speed wave-piercer catamaran. The model was designed for total lift force measurement and pressure tappings allowed for pressures to be measured at fixed locations on the underside of the hull and tab. This investigation examines the pressures at various flow velocities and tab deflection angles for the case of horizontal vessel trim. A simplified two-dimensional CFD model of the hull and tab has also been analysed using ANSYS CFX software. The results of model tests and CFD indicate that the maximum pressure occurs in the vicinity of the tab hinge and that the pressure distribution is long-tailed in the direction forward of the hinge. This accounts for the location of the resultant lift force, which is found to act forward of the tab hinge.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 146
Author(s):  
Takehiro Tamaru ◽  
Shinichiro Ito ◽  
Masaki Hiratsuka

Volleyball is a sport that starts with a serve, so effective service is essential to win the game. The trajectory of the ball is complicatedly affected by the fluid force, which depends on the speed, spin speed, and panel shape. To understand the aerodynamic characteristics of the ball and to propose an ideal serve method, we measured the fluid force and flight trajectory. The fluid force applied to the ball was measured at a wind speed of 4–30 m/s in the wind tunnel. The fluid force on the ball was strongly dependent on the ball type and orientation of the panel. In the flight trajectory measurement, the trajectory of the ball was measured using a high-speed camera under controlled speed and spin speed using a shotting machine. The effect of the panel orientation shown by the fluid force measurement was consistent with the results of the trajectory analysis, clarifying the importance of the panel orientation in serving.


2017 ◽  
Vol 8 ◽  
pp. 1563-1570 ◽  
Author(s):  
Juan Ren ◽  
Qingze Zou

Adaptive multiloop-mode (AMLM) imaging to substantially increase (over an order of magnitude) the speed of tapping-mode (TM) imaging is tested and evaluated through imaging three largely different heterogeneous polymer samples in experiments. It has been demonstrated that AMLM imaging, through the combination of a suite of advanced control techniques, is promising to achieve high-speed dynamic-mode atomic force microscopy imaging. The performance, usability, and robustness of the AMLM in various imaging applications, however, is yet to be assessed. In this work, three benchmark polymer samples, including a PS–LDPE sample, an SBS sample, and a Celgard sample, differing in feature size and stiffness of two orders of magnitude, are imaged using the AMLM technique at high-speeds of 25 Hz and 20 Hz, respectively. The comparison of the images obtained to those obtained by using TM imaging at scan rates of 1 Hz and 2 Hz showed that the quality of the 25 Hz and 20 Hz AMLM imaging is at the same level of that of the 1 Hz TM imaging, while the tip–sample interaction force is substantially smaller than that of the 2 Hz TM imaging.


Author(s):  
Richard Bowman ◽  
Cécile Pacoret ◽  
D. Sinan Haliyo ◽  
Stéphane Régnier ◽  
Graham Gibson ◽  
...  

2012 ◽  
Vol 463-464 ◽  
pp. 684-688
Author(s):  
Daniel Popescu ◽  
Stefan Buzatu ◽  
Raluca Gavrila ◽  
Marian Popescu

The paper presents two measurement systems for the dynamic components of the grinding forces in case of robots that perform finishing operations. The optimization of the measurement system is performed at the force measurement captor level using a special structure elastic element within the digital command robot driving system.


Sign in / Sign up

Export Citation Format

Share Document