scholarly journals Discrepancy between measured dynamic poroelastic parameters and predicted values from Wyllie’s equation for water-saturated Istebna sandstone

2021 ◽  
Author(s):  
Dariusz Knez ◽  
Herimitsinjo Rajaoalison

AbstractThe drilling-related geomechanics requires a better understanding of the encountered formation properties such as poroelastic parameters. This paper shows set of laboratory results of the dynamic Young’s modulus, Poisson’s ratio, and Biot’s coefficient for dry and water-saturated Istebna sandstone samples under a series of confining pressure conditions at two different temperatures. The predicted results from Wyllie’s equation were compared to the measured ones in order to show the effect of saturation on the rock weakening. A negative correlation has been identified between Poisson’s ratio, Biot’s coefficient and confining pressure, while a positive correlation between confining pressure and Young’s modulus. The predicted dynamic poroelastic rock properties using the P-wave value from Wyllie’s equation are different from measured ones. It shows the important influence of water saturation on rock strength, which is confirmed by unconfined compressive strength measurement. Linear equations have been fitted for the laboratory data and are useful for the analysis of coupled stress and pore pressure effects in geomechanical problems. Such results are useful for many drilling applications especially in evaluation of such cases as wellbore instability and many other drilling problems.

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. N35-N42 ◽  
Author(s):  
Zhaoyun Zong ◽  
Xingyao Yin ◽  
Guochen Wu

Young’s modulus and Poisson’s ratio are related to quantitative reservoir properties such as porosity, rock strength, mineral and total organic carbon content, and they can be used to infer preferential drilling locations or sweet spots. Conventionally, they are computed and estimated with a rock physics law in terms of P-wave, S-wave impedances/velocities, and density which may be directly inverted with prestack seismic data. However, the density term imbedded in Young’s modulus is difficult to estimate because it is less sensitive to seismic-amplitude variations, and the indirect way can create more uncertainty for the estimation of Young’s modulus and Poisson’s ratio. This study combines the elastic impedance equation in terms of Young’s modulus and Poisson’s ratio and elastic impedance variation with incident angle inversion to produce a stable and direct way to estimate the Young’s modulus and Poisson’s ratio, with no need for density information from prestack seismic data. We initially derive a novel elastic impedance equation in terms of Young’s modulus and Poisson’s ratio. And then, to enhance the estimation stability, we develop the elastic impedance varying with incident angle inversion with damping singular value decomposition (EVA-DSVD) method to estimate the Young’s modulus and Poisson’s ratio. This method is implemented in a two-step inversion: Elastic impedance inversion and parameter estimation. The introduction of a model constraint and DSVD algorithm in parameter estimation renders the EVA-DSVD inversion more stable. Tests on synthetic data show that the Young’s modulus and Poisson’s ratio are still estimated reasonable with moderate noise. A test on a real data set shows that the estimated results are in good agreement with the results of well interpretation.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5007
Author(s):  
Stian Rørheim ◽  
Mohammad Hossain Bhuiyan ◽  
Andreas Bauer ◽  
Pierre Rolf Cerasi

Carbon capture and storage (CCS) by geological sequestration comprises a permeable formation (reservoir) for CO2 storage topped by an impermeable formation (caprock). Time-lapse (4D) seismic is used to map CO2 movement in the subsurface: CO2 migration into the caprock might change its properties and thus impact its integrity. Simultaneous forced-oscillation and pulse-transmission measurements are combined to quantify Young’s modulus and Poisson’s ratio as well as P- and S-wave velocity changes in the absence and in the presence of CO2 at constant seismic and ultrasonic frequencies. This combination is the laboratory proxy to 4D seismic because rock properties are monitored over time. It also improves the understanding of frequency-dependent (dispersive) properties needed for comparing in-situ and laboratory measurements. To verify our method, Draupne Shale is monitored during three consecutive fluid exposure phases. This shale appears to be resilient to CO2 exposure as its integrity is neither compromised by notable Young’s modulus and Poisson’s ratio nor P- and S-wave velocity changes. No significant changes in Young’s modulus and Poisson’s ratio seismic dispersion are observed. This absence of notable changes in rock properties is attributed to Draupne being a calcite-poor shale resilient to acidic CO2-bearing brine that may be a suitable candidate for CCS.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shiwei Lu ◽  
Chuanbo Zhou ◽  
Zhen Zhang ◽  
Ling Ji ◽  
Nan Jiang

The open-pit mining slopes continue to become higher and steeper with the continuous exploitation of near-surface mineral resources. The blasting excavation exerts a significance influence on the slope stability. In fact, intact rock slopes do not exist and slope stability is controlled by the geological defects. In this paper, the stability of a rock slope imbedded with a fault is considered. The P-wave component of blasting seismic waves is focused on and the fault is simplified as a semi-infinite crack. In background of Daye iron mine, the peak particle velocity (PPV) threshold is determined based on the linear elastic fracture dynamics. The influence of frequency, Young's modulus, and Poisson's ratio is studied to modify the PPV threshold. Results show that (1) the PPV threshold decreases with the increasing Young's modulus and Poisson's ratio, but increases with the increasing frequency; (2) the initiation angle is immune to Young's modulus and the frequency, and only depends on the Poisson's ratio; (3) the PPV criterion is finally determined as 1.47 cm/s when the frequency f ≤ 10 Hz, 1.47 cm/s–3.30 cm/s when 10 Hz < f ≤ 50 Hz and 3.37 cm/s–6.59 cm/s when f > 50 Hz, which are far less than that of intact rock slopes; (4) The north slope is quite safe if the proposed PPV threshold is not violated due to the variation range of the initiation angle θ0.


Geophysics ◽  
1960 ◽  
Vol 25 (2) ◽  
pp. 433-444 ◽  
Author(s):  
R. L. Mann ◽  
I. Fatt

Bulk compressibility, Young’s modulus, and Poisson’s ratio were measured on three sandstones. Measurements were made on both dry and water saturated samples. Several runs were made on each sandstone to establish the statistical validity of the differences observed between the wet and dry samples. Bulk compressibility of wet sandstone was 10 to 30 percent greater than for dry. Young’s modulus was 8 to 20 percent less for wet sandstone, and Poisson’s ratio was 100 percent greater on one type of sandstone when wet and only slightly greater or about the same on wet samples of the others. A high clay content is believed to lead to a large effect of water on the elastic moduli of sandstone.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Hao Chen ◽  
Hai-Bo Lv ◽  
Zheng-han Chen ◽  
Yu-han Li

By using the high-temperature and high-pressure triaxial apparatus, 81 undrained triaxial shearing tests of GMZ bentonite were carried out, and the effects of temperature, confining pressure, water content, and dry density on the deformation and strength characteristics of GMZ bentonite were systematically analyzed. Five results are presented in this paper: (1) confining pressure and dry density have a great influence on the failure forms of GMZ bentonite; under the nonconfined pressure condition, the failure forms of the specimen are brittle failure, and it is the same with high dry density, but the specimens with low dry density and high confining pressure exhibit plastic failure; (2) the strength of GMZ bentonite decreases with increasing water content; the position of the deviator stress-axial strain curve under low dry density rises with the increase of temperature, whereas the location of the curve under high dry density decreases with the rise of temperature; (3) initial Young’s modulus rises with increasing temperature under low dry density, but it is on the contrary under high dry density; with rising water content, initial Young’s modulus generally decreases; (4) Poisson’s ratio rises with rising temperature. The effect of dry density and water content on Poisson’s ratio is insignificant; and (5) the formulae of cohesion and internal friction angle of GMZ bentonite with the changing dry density, water content, and temperature are proposed, respectively. The research results of this paper provide a scientific basis for analyzing the thermo-hydro-mechanical coupling characteristics of buffer materials.


Author(s):  
Ahmad Muraji Suranto ◽  
Aris Buntoro ◽  
Carolus Prasetyadi ◽  
Ricky Adi Wibowo

In modeling the hydraulic fracking program for unconventional reservoir shales, information about elasticity rock properties is needed, namely Young's Modulus and Poisson's ratio as the basis for determining the formation depth interval with high brittleness. The elastic rock properties (Young's Modulus and Poisson's ratio) are a geomechanical parameters used to identify rock brittleness using core data (static data) and well log data (dynamic data). A common problem is that the core data is not available as the most reliable data, so well log data is used. The principle of measuring elastic rock properties in the rock mechanics lab is very different from measurements with well logs, where measurements in the lab are in high stresses / strains, low strain rates, and usually drained, while measurements in well logging use the principle of measured downhole by high frequency sonic. vibrations in conditions of very low stresses / strains, High strain rate, and Always undrained. For this reason, it is necessary to convert dynamic to static elastic rock properties (Poisson's ratio and Young's modulus) using empirical equations. The conversion of elastic rock properties (well logs) from dynamic to static using the empirical calculation method shows a significant shift in the value of Young's Modulus and Poisson's ratio, namely a shift from the ductile zone dominance to the dominant brittle zone. The conversion results were validated with the rock mechanical test results from the analog outcrop cores (static) showing that the results were sufficiently correlated based on the distribution range.


2006 ◽  
Vol 914 ◽  
Author(s):  
Jiping Ye ◽  
Satoshi Shimizu ◽  
Shigeo Sato ◽  
Nobuo Kojima ◽  
Junnji Noro

AbstractA recently developed bidirectional thermal expansion measurement (BTEM) method was applied to different types of low-k films to substantiate the reliability of the Poisson's ratio found with this technique and thereby to corroborate its practical utility. In this work, the Poisson's ratio was determined by obtaining the temperature gradient of the biaxial thermal stress from substrate curvature measurements, the temperature gradient of the whole thermal expansion strain along the film thickness from x-ray reflectivity (XRR) measurements, and reduced modulus of the film from nanoindentation measurements. For silicon oxide-based SiOC film having a thickness of 382.5 nm, the Poisson's ratio, Young's modulus and thermal extension coefficient (TEC) were determined to be Vf = 0.26, αf =21 ppm/K and Ef =9,7 GPa. These data are close to the levels of metals and polymers rather than the levels of fused silicon oxide, which is characterized by Vf = 0.17 and Er = 69.6 GPa. The alkyl component in the silicon oxide-based framework is thought to act as an agent in reducing the modulus and elevating the Poisson's ratio in SiOC low-k materials. In the case of an organic polymer SiLK film with a thickness of 501.5 nm, the Poisson's ratio, Young's modulus and TEC were determined to be Vf = 0.39, αf =74 ppm/K and Er =3.1 GPa, which are in the typical range of V= 0.34~0.47 with E =1.0~10 GPa for polymer materials. From the viewpoint of the relationship between the Poisson's ratio and Young's modulus as classified by different material types, the Poisson's ratios found for the silicon oxide-based SiOC and organic SiLK films are reasonable values, thereby confirming that BTEM is a reliable and effective method for evaluating the Poisson's ratio of thin films.


Sign in / Sign up

Export Citation Format

Share Document