cysteine labeling
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nobuaki Ishihama ◽  
Seung-won Choi ◽  
Yoshiteru Noutoshi ◽  
Ivana Saska ◽  
Shuta Asai ◽  
...  

AbstractNonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3760
Author(s):  
Camila González ◽  
Constanza Cartagena ◽  
Leonardo Caballero ◽  
Francisco Melo ◽  
Carlos Areche ◽  
...  

Neurodegenerative disorders, including Tauopathies that involve tau protein, base their pathological mechanism on forming proteinaceous aggregates, which has a deleterious effect on cells triggering an inflammatory response. Moreover, tau inhibitors can exert their mechanism of action through noncovalent and covalent interactions. Thus, Michael’s addition appears as a feasible type of interaction involving an α, β unsaturated carbonyl moiety to avoid pathological confirmation and further cytotoxicity. Moreover, we isolated three compounds from Antarctic lichens Cladonia cariosa and Himantormia lugubris: protolichesterinic acid (1), fumarprotocetraric acid (2), and lichesterinic acid (3). The maleimide cysteine labeling assay showed that compounds 1, 2, and 3 inhibit at 50 µM, but compounds 2 and 3 are statistically significant. Based on its inhibition capacity, we decided to test compound 2 further. Thus, our results suggest that compound 2 remodel soluble oligomers and diminish β sheet content, as demonstrated through ThT experiments. Hence, we added externally treated oligomers with compound 2 to demonstrate that they are harmless in cell culture. First, the morphology of cells in the presence of aggregates does not suffer evident changes compared to the control. Additionally, the externally added aggregates do not provoke a substantial LDH release compared to the control, indicating that treated oligomers do not provoke membrane damage in cell culture compared with aggregates alone. Thus, in the present work, we demonstrated that Michael’s acceptors found in lichens could serve as a scaffold to explore different mechanisms of action to turn tau aggregates into harmless species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ksenia Terekhova ◽  
Sabine Pokutta ◽  
Yee S. Kee ◽  
Jing Li ◽  
Emad Tajkhorshid ◽  
...  

Abstract Adherens Junctions (AJs) are cell-cell adhesion complexes that sense and propagate mechanical forces by coupling cadherins to the actin cytoskeleton via β-catenin and the F-actin binding protein αE-catenin. When subjected to mechanical force, the cadherin•catenin complex can tightly link to F-actin through αE-catenin, and also recruits the F-actin-binding protein vinculin. In this study, labeling of native cysteines combined with mass spectrometry revealed conformational changes in αE-catenin upon binding to the E-cadherin•β-catenin complex, vinculin and F-actin. A method to apply physiologically meaningful forces in solution revealed force-induced conformational changes in αE-catenin when bound to F-actin. Comparisons of wild-type αE-catenin and a mutant with enhanced vinculin affinity using cysteine labeling and isothermal titration calorimetry provide evidence for allosteric coupling of the N-terminal β-catenin-binding and the middle (M) vinculin-binding domain of αE-catenin. Cysteine labeling also revealed possible crosstalk between the actin-binding domain and the rest of the protein. The data provide insight into how binding partners and mechanical stress can regulate the conformation of full-length αE-catenin, and identify the M domain as a key transmitter of conformational changes.


2018 ◽  
Vol 61 (24) ◽  
pp. 11199-11208 ◽  
Author(s):  
Dennis Szymanski ◽  
Malvina Papanastasiou ◽  
Lakshmipathi Pandarinathan ◽  
Nikolai Zvonok ◽  
David R. Janero ◽  
...  

2018 ◽  
Vol 293 (46) ◽  
pp. 17997-18009 ◽  
Author(s):  
Eugene Serebryany ◽  
Shuhuai Yu ◽  
Sunia A. Trauger ◽  
Bogdan Budnik ◽  
Eugene I. Shakhnovich

Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox “hot potato” competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.


2017 ◽  
Vol 57 (2) ◽  
pp. 741-746 ◽  
Author(s):  
Alexander T. Taguchi ◽  
Yoshiharu Miyajima-Nakano ◽  
Risako Fukazawa ◽  
Myat T. Lin ◽  
Amgalanbaatar Baldansuren ◽  
...  

Structure ◽  
2017 ◽  
Vol 25 (3) ◽  
pp. 395-406 ◽  
Author(s):  
Tariq Ahmad Najar ◽  
Shruti Khare ◽  
Rajesh Pandey ◽  
Satish K. Gupta ◽  
Raghavan Varadarajan

Sign in / Sign up

Export Citation Format

Share Document