collective movements
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Alessia Calafiore ◽  
Nombuyisielo Murage ◽  
Andrea Nasuto ◽  
Francisco Rowe

This paper leverages on the opportunities presented by individual level GPS data to study human mobility. It develops a methodology to understand the spatio-temporal properties of collective movements using network science. Through a spatially-weighted community detection approach, we derived functional neighbourhoods from human mobility patterns from GPS data and analyse the extent to which they vary across time. The results show that while the overall city structure remains stable, functional neighbourhoods tend to contract and expand over the course of the day. This work proposes a methodological framework and emphasises the importance of detecting short-term structural changes in cities based on human mobility.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yelena Y Bernadskaya ◽  
Haicen Yue ◽  
Calina Copos ◽  
Lionel Christiaen ◽  
Alex Mogilner

Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.


2021 ◽  
Vol 6 ◽  
Author(s):  
Abdullah N Alhawsawi ◽  
Majid Sarvi ◽  
Emad Felemban ◽  
Abbas Rajabifard ◽  
Jianyu Wang

The aim of this study is to understand the collective movements of individuals and to observe how individuals interact within a physical environment in a crowd dynamic, which has drawn the attention of many researchers. We conducted an experimental study to observe interactions in the collective motions of people and to identify characteristics of pedestrians when passing obstacles of different sizes (bar-shaped, 1.2 m, 2.4 m, 3.6 m and 4.8 m), going through one narrow exit and employing three different flow rates in walking and running conditions. According to the results of our study, there were no differences in collision-avoidance behaviour of pedestrians when walking or running. The pedestrians reacted early to the obstacles and changed the direction in which they were walking by quickly turning to the left or to the right. In terms of the speed of the pedestrians, the average velocity was significantly affected while performing these tasks, decreasing as the size of the obstacle increased; therefore, the size of obstacles will affect flow and speed levels. Travel time was shorter when participants were in the medium-flow rate experiments. In terms of the distance of each individual’s travel, our data showed that there was no significant difference in all the flow rate experiments for both speed levels. Our results also show that when the pedestrians crossed an obstacle, the lateral distance averaged from 0.3 m to 0.7 m, depending on the flow rate and speed level. We then explored how the body sways behaved while avoiding obstacles. It is observed that the average sway of the body was less in the high-speed conditions compared to the low-speed conditions – except for the HF & 4.8 m experiment. These results are expected to provide an insight into the characteristics of the behaviour of pedestrians when avoiding objects, and this could help enhance agent-based models.


2021 ◽  
Author(s):  
Weijia Wang ◽  
Ramon Escobedo ◽  
Stephane Sanchez ◽  
Clement Sire ◽  
Zhangang Han ◽  
...  

In moving animal groups, social interactions play a key role in the ability of individuals to achieve coordinated motion. However, a large number of environmental and cognitive factors are able to modulate the expression of these interactions and the characteristics of the collective movements that result from these interactions. Here, we use a data-driven fish school model (Calovi et al., 2018; Lei et al., 2020) to quantitatively investigate the impact of perceptual and cognitive factors on coordination and collective swimming patterns. The model describes the interactions involved in the coordination of burst-and-coast swimming in groups of Hemigrammus rhodostomus. We perform a comprehensive investigation of the respective impacts of two interactions strategies between fish based on the selection of the most or the two most influential neighbors, of the range and intensity of social interactions, of the intensity of individual random behavioral fluctuations, and of the group size, on the ability of groups of fish to coordinate their movements. We find that fish are able to coordinate their movements when they interact with their most or two most influential neighbors, provided that a minimal level of attraction between fish exist to maintain group cohesion. A minimal level of alignment is also required to allow the formation of schooling and milling. However, increasing the strength of social interactions does not necessarily enhance group cohesion and coordination. When attraction and alignment strengths are too high, or when the heading random fluctuations are too large, schooling and milling can no longer be maintained and the school switches to a swarming phase. Increasing the interaction range between fish has a similar impact on collective dynamics as increasing the strengths of attraction and alignment. Finally, we find that coordination and schooling occurs for a wider range of attraction and alignment strength in small group sizes.


Author(s):  
B. J. Sánchez-Alcaraz Martínez ◽  
J. Ramón-Llín ◽  
A. Sánchez-Pay ◽  
J. F. Guzmán ◽  
G. Vučković ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Danai Papageorgiou ◽  
David Rozen-Rechels ◽  
Brendah Nyaguthii ◽  
Damien R. Farine

Abstract Background A challenge faced by animals living in groups with stable long-term membership is to effectively coordinate their actions and maintain cohesion. However, as seasonal conditions alter the distribution of resources across a landscape, they can change the priority of group members and require groups to adapt and respond collectively across changing contexts. Little is known about how stable group-living animals collectively modify their movement behaviour in response to environment changes, such as those induced by seasonality. Further, it remains unclear how environment-induced changes in group-level movement behaviours might scale up to affect population-level properties, such as a population’s footprint. Methods Here we studied the collective movement of each distinct social group in a population of vulturine guineafowl (Acryllium vulturinum), a largely terrestrial and non-territorial bird. We used high-resolution GPS tracking of group members over 22 months, combined with continuous time movement models, to capture how and where groups moved under varying conditions, driven by seasonality and drought. Results Groups used larger areas, travelled longer distances, and moved to new places more often during drier seasons, causing a three-fold increase in the area used at the population level when conditions turned to drought. By contrast, groups used smaller areas with more regular movements during wetter seasons. Conclusions The consistent changes in collective outcomes we observed in response to different environments raise questions about the role of collective behaviour in facilitating, or impeding, the capacity for individuals to respond to novel environmental conditions. As droughts will be occurring more often under climate change, some group living animals may have to respond to them by expressing dramatic shifts in their regular movement patterns. These shifts can have consequences on their ranging behaviours that can scale up to alter the footprints of animal populations.


Author(s):  
Arturo Tozzi

Set theory faces two difficulties: formal definitions of sets/subsets are incapable of assessing biophysical issues; formal axiomatic systems are complete/inconsistent or incomplete/consistent. To overtake these problems reminiscent of the old-fashioned principle of individuation, we provide formal treatment/validation/operationalization of a methodological weapon termed “outer approach” (OA). The observer’s attention shifts from the system under evaluation to its surroundings, so that objects are investigated from outside. Subsets become just “holes” devoid of information inside larger sets. Sets are no longer passive containers, rather active structures enabling their content’s examination. Consequences/applications of OA include: a) operationalization of paraconsistent logics, anticipated by unexpected forerunners, in terms of advanced truth theories of natural language, anthropic principle and quantum dynamics; b) assessment of embryonic craniocaudal migration in terms of Turing’s spots; c) evaluation of hominids’ social behaviors in terms of evolutionary modifications of facial expression’s musculature; d) treatment of cortical action potentials in terms of collective movements of extracellular currents, leaving apart what happens inside the neurons; e) a critique of Shannon’s information in terms of the Arabic thinkers’ active/potential intellects. Also, OA provides an outer view of a) humanistic issues such as the enigmatic Celestino of Verona’s letter, Dante Alighieri’s “Hell” and the puzzling Voynich manuscript; b) historical issues such as Aldo Moro’s death and the Liston/Clay boxing fight. Summarizing, the safest methodology to quantify phenomena is to remove them from our observation and tackle an outer view, since mathematical/logical issues such as selective information deletion and set complement rescue incompleteness/inconsistency of biophysical systems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Isaac Planas-Sitjà ◽  
Jean-Louis Deneubourg ◽  
Adam L. Cronin

AbstractCollective movements are essential for the effective function of animal societies, but are complicated by the need for consensus among group members. Consensus is typically assumed to arise via feedback mechanisms, but this ignores inter-individual variation in behavioural tendency (‘personality’), which is known to underpin the successful function of many complex societies. In this study, we use a theoretical approach to examine the relative importance of personality and feedback in the emergence of collective movement decisions in animal groups. Our results show that variation in personality dramatically influences collective decisions and can partially or completely replace feedback depending on the directionality of relationships among individuals. The influence of personality increases with the exaggeration of differences among individuals. While it is likely that both feedback and personality interact in nature, our findings highlight the potential importance of personality in driving collective processes.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 598 ◽  
Author(s):  
María Nieves López-García ◽  
Miguel Angel Sánchez-Granero ◽  
Juan Evangelista Trinidad-Segovia ◽  
Antonio Manuel Puertas ◽  
Francisco Javier De las Nieves

The volatility and log-price collective movements among stocks of a given market are studied in this work using co-movement functions inspired by similar functions in the physics of many-body systems, where the collective motions are a signal of structural rearrangement. This methodology is aimed to identify the cause of coherent changes in volatility or price. The function is calculated using the product of the variations in volatility (or price) of a pair of stocks, averaged over all pair particles. In addition to the global volatility co-movement, its distribution according to the volatility of the stocks is also studied. We find that stocks with similar volatility tend to have a greater co-movement than stocks with dissimilar volatility, with a general decrease in co-movement with increasing volatility. On the other hand, when the average volatility (or log-price) is subtracted from the stock volatility (or log-price), the co-movement decreases notably and becomes almost zero. This result, interpreted within the background of many body physics, allows us to identify the index motion as the main source for the co-movement. Finally, we confirm that during crisis periods, the volatility and log-price co-movement are much higher than in calmer periods.


Sign in / Sign up

Export Citation Format

Share Document