Permian source rocks of the onshore and nearshore Carnarvon Basin

2021 ◽  
Vol 61 (2) ◽  
pp. 726
Author(s):  
Charmaine M. Thomas

A new sampling program of Permian potential source rocks was undertaken to improve knowledge of the Permian petroleum prospectivity in new parts of the Southern Carnarvon and inboard Northern Carnarvon Basins. Presented here are new Rock-Eval data from previously unsampled wells, drillholes and outcrop and new infill sampling between existing data points. Kerogen assemblages of selected intervals were also determined from palynofacies analysis or organic petrography, which suggests the good Permian source rocks are generally dominated by gas-prone kerogens. Possibly terrestrial-derived oil-prone kerogen can also be frequently found in thin intervals of the upper Permian and more rarely in lower Permian in the onshore northern Carnarvon Basin.

2018 ◽  
Vol 58 (1) ◽  
pp. 282 ◽  
Author(s):  
K. Ameed R. Ghori

Petroleum geochemical analysis of samples from the Canning, Carnarvon, Officer and Perth basins identified several formations with source potential, the: • Triassic Locker Shale and Jurassic Dingo Claystone of the Northern Carnarvon Basin; • Permian Irwin River Coal Measures and Carynginia Formation, Triassic Kockatea Shale and Jurassic Cattamarra Coal Measures of the Perth Basin; • Ordovician Goldwyer and Bongabinni formations, Devonian Gogo Formation and Lower Carboniferous Laurel Formation of the Canning Basin; • Devonian Gneudna Formation of the Gascoyne Platform and the Lower Permian Wooramel and Byro groups of the Merlinleigh Sub-basin of the Southern Carnarvon Basin; and • Neoproterozoic Brown, Hussar, Kanpa and Steptoe formations of the Officer Basin. Burial history and geothermal basin modelling was undertaken using input parameters from geochemical analyses of rock samples, produced oil, organic petrology, apatite fission track analysis (AFTA), heat flows, subsurface temperatures and other exploration data compiled by the Geological Survey of Western Australia (GSWA). Of these basins, the Canning, Carnarvon, and Perth basins are currently producing oil and gas, whereas the Southern Carnarvon and Officer basins have no commercial petroleum discovery yet, but they do have source, reservoir, seal and petroleum shows indicating the presence of petroleum systems. The Carnarvon Basin contains the richest identified petroleum source rocks, followed by the Perth and Canning basins. Production in the Carnarvon Basin is predominantly gas and oil, the Perth Basin is gas-condensate and the Canning Basin is oil dominated, demonstrating the variations in source rock type and maturity across the state. GSWA is continuously adding new data to assess petroleum systems and prospectivity of these and other basins in Western Australia.


1973 ◽  
Vol 13 (1) ◽  
pp. 33
Author(s):  
George E. Williams

Sediments of three major basins occur in the Simpson Desert region of central Australia:Cambro -Ordovician dolomites and sandstones, and Siluro- Devonian conglomerates, sandstones and shales, related to the Amadeus Basin:Permian conglomerates, sandstones, shales and coals of the Simpson Desert Sub-basin, the extensive eastern lobe of the Pedirka Basin:Mesozoic sandstones and shales of the Eromanga Basin.Principal petroleum exploration interest is presently directed toward the Permian sediments, which have many features in common with the petroleum producing Permian section of the neighbouring Cooper Basin.Lower Permian sediments known from drilling in the Simpson Desert Sub-basin comprise glaciofluvial conglomerates and sandstones overlain by fluvial and lacustrine sandstones, silt-stones, shales and coals. The maximum thickness encountered in wells is 1,479 ft (448 m) in Mokari 1.Recent seismic exploration 50 to 100 mi (80-160 km) west of Poeppel Corner in the deeper part of the Simpson Desert Sub-basin indicates that an additional sediment package up to 1,500 ft (350 m) thick occurs at depths of 6,500 to 7,500 ft (2,000-2,300 m) between Lower Permian and Lower Jurassic sections. This sediment package, nowhere penetrated by drilling, may be Middle to Upper Permian and/or Triassic in age. It is of great significance to petroleum exploration in the sub-basin and substantially upgrades the hydrocarbon prospects of the region.Permian sediments in the Simpson Desert Sub-basin thin by onlap, wedge out and stripping over the crests of anticlinal growth structures. Crestal sediments probably comprise mainly porous sandstones, grading off-structure into thicker sequences containing carbonaceous shales and coals. Such carbonaceous potential source rocks are probably best developed in the deepest part of the sub-basin, where Triassic cap rock may also be present. Two particularly promising drilling targets—the Colson Anticline and the East Colson Anticline—have been revealed by recent geophysical surveys in this portion of the sub-basin. Wells drilled on these structures may intersect Permo-Triassic sediments up to 2,200 + ft (670 in) thick which are comparable in age and type with producing sections in the Cooper Basin.


2000 ◽  
Vol 40 (1) ◽  
pp. 26
Author(s):  
M.R. Bendall C.F. Burrett ◽  
H.J. Askin

Sedimentary successions belonging to three petroleum su persy stems can be recognised in and below the Late Carboniferous to Late Triassic onshore Tasmania Basin. These are the Centralian, Larapintine and Gondwanan. The oldest (Centralian) is poorly known and contains possible mature source rocks in Upper Proterozoic dolomites. The Larapintine 2 system is represented by rocks of the Devonian fold and thrust belt beneath the Tasmania Basin. Potential source rocks are micrites and shales within the 1.8 km-thick tropical Ordovician Gordon Group carbonates. Conodont CAI plots show that the Gordon Group lies in the oil and gas windows over most of central Tasmania and probably under much of the Tasmania Basin. Potential reservoirs are the upper reefal parts of the Gordon Group, paleokarsted surfaces within the Gordon Group and the overlying sandstones of the Siluro-Devonian Tiger Range and Eldon Groups. Seal rocks include shales within the Siluro-Devonian and Upper Carboniferous-Permian tillites and shales.The Gondwanan supersystem is the most promising supersystem for petroleum exploration within the onshore Tasmania Basin. It is divided into two petroleum systems— the Early Permian Gondwanan 1 system, and the Late Permian to Triassic Gondwanan 2 system. Excellent source rocks occur in the marine Tasmanite Oil Shale and other sections within the Lower Permian Woody Island and Quamby Formations of the Gondwanan 1 system and within coals and freshwater oil shales of the Gondwanan 2 system. These sources are within the oil and gas windows across most of the basin and probably reached peak oil generation at about 100 Ma. An oil seep, sourced from a Tasmanites-rich, anoxic shale, is found within Jurassic dolerite 40 km WSW of Hobart. Potential Gondwanan 1 reservoirs are the glaciofluvial Faulkner Group sandstones and sandstones and limestones within the overlying parts of the glaciomarine Permian sequence. The Upper Permian Ferntree Mudstone Formation provides an effective regional seal. Potential Gondwanan 2 reservoirs are the sandstones of the Upper Permian to Norian Upper Parmeener Supergroup. Traps consisting of domes, anticlines and faults were formed probably during the Early Cretaceous. Preliminary interpretation of a short AGSO seismic profile in the Tasmania Basin shows that, contrary to earlier belief, structures can be mapped beneath extensive and thick (300 m) sills of Jurassic dolerite. In addition, the total section of Gondwana to Upper Proterozoic to Triassic sediments appears to be in excess of 8,500 m. These recent studies, analysis of the oil seep and drilling results show that the Tasmanian source rocks have generated both oil and gas. The Tasmania Basin is considered prospective for both petroleum and helium and is comparable in size and stratigraphy to other glaciomarine-terrestrial Gondwanan basins such as the South Oman and Cooper Basins.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Aboglila S

This search aims to apply developed geochemical methods to a number of oils and source rock extracts to better establish the features of ancient environments that occurred in the Murzuq basin. Geochemical and geophysical approaches were used to confirm further a source contribution from other Paleozoic formations to hydrocarbon accumulations in the basin. One hundred and forty rock units were collected from B1-NC151, D1-NC174, A1-NC 76, D1-NC 151, F1-NC58, A1-NC 186, P1-NC 101, D1-NC 58, H1-NC58 and A1-NC58 wells. Seven crude oils were collocated A1-NC186, B1-NC186, E2-NC101, F3-NC174, A10-NC115, B10-NC115 and H10-NC115 wells. A geochemical assessment of the studied rocks and oils was done by means of geochemical parameters of total organic carbon (TOC), Rock-Eval analysis, detailed-various biomarkers and stable carbon isotope. The TOC values from B1-NC151 range 0.40% to 8.5%, A1-NC186 0.3% and 1.45, A1-NC76 0.39% to 0.74%, D1-NC151 0.40% to 2.00% to F1-NC58 0.40% to 1.12%. D1_NC174 0.30% to 10 %, P1-NC101 0.80% to 1.35%, D1-NC58 0.5% to 1.10%, H1-NC58 0.20% to 3.50%, A1-NC58 0.40% to 1.60%. The categories of organic matter from rock-eval pyrolysis statistics point to that type II kerogen is the main type, in association with type III, and no of type I kerogen recognized. Vitrinite reflectance (%Ro), Tmax and Spore colour index (SCI) as thermal maturity parameters reflect that the measured rock units are have different maturation levels, ranging from immature to mature sources. acritarchs distribution for most samples could be recognized and Palynomorphs are uncommon. Pristane to phytane ratios (> 1) revealed marine shale to lacustrine of environmental deposition. The Stable carbon isotope ( δ 13 C) values of seven rock-extract samples are -30.98‰ and -29.14‰ of saturates and -29.86‰ to -28.37‰ aromatic fractions. The oil saturate hydrocarbon fractions range between -29.36‰ to -28.67‰ and aromatic are among -29.98 ‰ to -29.55 ‰. The δ 13 C data in both rock extractions and crude oils are closer to each other, typical in sign of Paleozoic age. It is clear that the base of Tanezzuft Formation (Hot shale) is considered the main source rocks. The Devonian Awaynat Wanin Formation as well locally holds sufficient oil prone kerogen to consider as potential source rocks. Ordovician Mamuniyat Formation shales may poorly contain oil prone kerogen to be addressed in future studies. An assessment of the correlations between the oils and potential source rocks and between the oils themselves indicated that most of the rocks extracts were broadly similar to most of the oils and supported by carbon stable isotope analysis results.


1997 ◽  
Vol 37 (1) ◽  
pp. 315 ◽  
Author(s):  
K. K. Romine ◽  
J. M. Durrant ◽  
D. L. Cathro ◽  
G. Bernardel

A regional tectono-stratigraphic framework has been developed for the Cretaceous and Tertiary section in the Northern Carnarvon Basin. This framework places traditional observations in a new context and provides a predictive tool for determining the temporal occurrence and spatial distribution of the lithofacies play elements, that iss reservoir, source and seal.Two new, potential petroleum systems have been identified within the Barremian Muderong Shale and Albian Gearle Siltstone. These potential source rocks could be mature or maturing along a trend that parallels the Alpha Arch and Rankin Platform, and within the Exinouth Sub-basin.A favourable combination of reservoir and seal can be predicted for the early regressive part of the Creta- ceous-Tertiary basin phase (Campanian-Palaeocene). Lowstand and transgressive (within incised valleys) reservoirs are more likely to be isolated and encased in sealing shales, similar to lowstand reservoir facies deposited during the transgressive part of the basin phase, for example, the M. australis sand play.The basin analysis revealed the important role played by pre-existing Proterozoic-Palaeozoic lineaments during extension, and the subsequent impact on play elements, in particular, the distribution of reservoir, fluid migration, and trap development. During extension, the north-trending lineaments influenced the compart mentalisation of the Northern Carnarvon Basin into discrete depocentres. Relay ramp-style accommodation zones developed, linking the sub-basins, and acting as pathways for sediment input into the depocentres and, later in the basin's history, as probable hydrocarbon migration pathways. The relay accommodation zones are a dynamic part of the basin architecture, acting as a focal point for response to intraplate stresses and the creation, modification and destruction of traps and migration pathways.


1986 ◽  
Vol 128 ◽  
pp. 103-121
Author(s):  
F Surlyk ◽  
S Piasecki ◽  
F Rolle

Active petroleum exploration in East Greenland is of fairly recent date and was preceded by a much longer history of scientific work and mineral exploration. The discovery in 1948 of lead-zinc mineralisation at Mestersvig resulted in the formation of Nordisk Mineselskab AIS in 1952. In the beginning of the seventies Nordisk Mineselskab initiated cooperation with the American oil company Atlantic Richfield (ARCO) in order to undertake petroleum exploration in Jameson Land. The Jameson Land basin contains a very thick Upper Palaeozoic - Mesozoic sedimentary sequence. Important potential source rocks are Lower Permian lacustrine mudstone, Upper Permian black marine mudstone, Middle Triassic dark marine limestone, uppermost Triassic black marginal marine mudstone, Lower Jurassic black mudstone and Upper Jurassic deep shelf black mudstone. Tbe Upper Permian mudstone, which is the most promising source rock, is immature to weakly mature along the western basin margin and is expected to be in the oil or gas-generating zone when deeply buried in the central part of the basin. Potential reservoir rocks include Upper Permian bank and mound limestones, uppermost Permian fan delta sandstones, Lower Triassic aeolian and braided river sandstones, and Lower, Middle and Upper Jurassic sandstones. The most important trap types are expected to be stratigraphic, such as Upper Permian limestone bodies, or combination stratigraphic-structural such as uppermost Permian or Lower Triassic sandstones in Early Triassic tilted fault blocks. In the offshore areas additional play types are probably to be found in tilted Jurassic fault blocks containing thick Lower, Middle and Upper Jurassic sandstones and lowermost Cretaceous sandstones and conglomerates. The recognition of the potential of the Upper Permian in petroleum exploration in East Greenland has important implications for petroleum exploration on the Norwegian shelf.


2001 ◽  
Vol 41 (1) ◽  
pp. 289 ◽  
Author(s):  
M.R. Bussell ◽  
D. Jablonski ◽  
T. Enman ◽  
M.J. Wilson ◽  
A.N. Bint

Some of Australia’s deepwater frontiers are opening up for exploration, with existing and new companies taking acreage positions. Despite favourable fiscal terms and political stability, interest levels have not matched those in international hot spots due to key differences in perceived prospectivity.In this paper, Australia’s deepwater plays in the Northern Carnarvon Basin are compared and contrasted with deepwater plays in the Gulf of Mexico and offshore Mauritania. This comparison is largely based on Woodside Energy Ltd’s exploration pursuits in these areas.The Northern Carnarvon Basin deepwater plays are principally an extension of shallower water petroleum fairways, submerged to greater water depths by the absence of the Tertiary progradational, carbonate shelf sequence. Trap types and reservoir-seal pairs in the deepwater prospects are similar to their shallow water counterparts, but extensive deepwater areas carry an increased exploration risk due to the absence of this shelf overburden to load the Jurassic source rocks into the oil expulsion window. Hydrocarbons generated typically comprise dry gas from deeper Triassic source rocks, often trapped in sub-commercial quantities. Although the basin lacks a world class, widespread, oil-generating source rock, recent deepwater commercial oil discoveries in the Exmouth Sub-basin indicate the existence of a localised sweet spot associated with a Late Jurassic depocentre, similar to the proven Barrow-Dampier Subbasins located in shallower waters.In contrast, Woodside’s deepwater Gulf of Mexico and offshore Mauritania plays combine deepwater depositional systems with present day deepwater. They have reservoir-quality turbidite sandstones, well imaged on excellent quality 3D seismic, sealed by deep marine shales and charged by world class, organic-rich, prolific source rocks. Salt tectonics, shale diapirism and sloperelated slumping and thrusting have generated appealing structural styles, resulting in multiple play types and a density of prospects and leads not seen in Australia’s deepwater frontiers to date.Although elements of these plays are present at some locations in Australia’s deepwater, nowhere yet have all the required exploration ingredients for a major oil province been found juxtaposed as in the proven Gulf of Mexico and the highly prospective offshore Mauritania. Political stability and relatively favourable fiscal terms remain essential in attracting the exploration investment dollar to Australia’s deepwater.


2003 ◽  
Vol 43 (2) ◽  
pp. 149 ◽  
Author(s):  
G.W. O’Brien ◽  
R. Cowley ◽  
G. Lawrence ◽  
A.K. Williams ◽  
M. Webster ◽  
...  

RadarSat and ERS Synthetic Aperture Radar (SAR) satellite data have been used for oil slick mapping as part of a systematic interpretative study of the offshore Canning Basin, as well as part of the northern Carnarvon Basin, extending from the inner shelf to the abyssal plain. These seepage data have been integrated with regional geological data, more than 12,000 km of reprocessed Airborne Laser Fluorosensor (ALF) survey data, seismic DHI indicators, water column geochemical sniffer data, potential field data, earthquake data and 2D Petromod basin modelling, to provide new insights into the region’s petroleum prospectivity and key exploration risk factors.From a prospectivity viewpoint, this study has highlighted several areas and processes. Firstly, it is clear that overpressure in the region is principally controlled by the thickness of the Tertiary carbonate wedge and we predict that overpressure may be present in parts of the deeper water Canning Basin. Secondly, the offshore Canning Basin contains a relatively low density of SAR-mapped oil slicks, though this appears to be due to a combination of factors, namely a paucity of vertical conduits for leakage, a predominantly condensate-prone charge and a small slick size.Significantly, several as-yet untested areas emerge from our observations. In the offshore Canning Basin, a 'window' exists in about 1,500–2,500 m of water, where the Triassic source rocks are particularly well placed for liquids generation. Morever, a large area in a radius some 20–80 km outboard of the Bedout High, also appears to have significant untested liquids potential, with respect to sourcing from the Triassic. The shallow section through this region contains a vast area with abundant seismically mapped gas chimneys and other seepage indicators, supporting the conclusions from the remote sensing and basin modelling of significant hydrocarbon charge in this region. Finally, the study indicates that liquids have been generated within the Palaeozoic section of the Bedout Sub-basin.


Sign in / Sign up

Export Citation Format

Share Document