scholarly journals Activity-based epidemic propagation and contact network scaling in auto-dependent metropolitan areas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nishant Kumar ◽  
Jimi Oke ◽  
Bat-hen Nahmias-Biran

AbstractWe build on recent work to develop a fully mechanistic, activity-based and highly spatio-temporally resolved epidemiological model which leverages person-trajectories obtained from an activity-based model calibrated for two full-scale prototype cities, consisting of representative synthetic populations and mobility networks for two contrasting auto-dependent city typologies. We simulate the propagation of the COVID-19 epidemic in both cities to analyze spreading patterns in urban networks across various activity types. Investigating the impact of the transit network, we find that its removal dampens disease propagation significantly, suggesting that transit restriction is more critical for mitigating post-peak disease spreading in transit dense cities. In the latter stages of disease spread, we find that the greatest share of infections occur at work locations. A statistical analysis of the resulting activity-based contact networks indicates that transit contacts are scale-free, work contacts are Weibull distributed, and shopping or leisure contacts are exponentially distributed. We validate our simulation results against existing case and mortality data across multiple cities in their respective typologies. Our framework demonstrates the potential for tracking epidemic propagation in urban networks, analyzing socio-demographic impacts and assessing activity- and mobility-specific implications of both non-pharmaceutical and pharmaceutical intervention strategies.

2020 ◽  
Author(s):  
Buse Eylul Oruc ◽  
Arden Baxter ◽  
Pinar Keskinocak ◽  
John Asplund ◽  
Nicoleta Serban

Abstract Background. Recent research has been conducted by various countries and regions on the impact of non-pharmaceutical interventions (NPIs) on reducing the spread of COVID19. This study evaluates the tradeoffs between potential benefits (e.g., reduction in infection spread and deaths) of NPIs for COVID19 and being homebound (i.e., refraining from interactions outside of the household).Methods. An agent-based simulation model, which captures the natural history of the disease at the individual level, and the infection spread via a contact network assuming heterogeneous population mixing in households, peer groups (workplaces, schools), and communities, is adapted to project the disease spread and estimate the number of homebound people and person-days under multiple scenarios, including combinations of shelter-in-place, voluntary quarantine, and school closure in Georgia from March 1 to September 1, 2020.Results. Compared to no intervention, under voluntary quarantine, voluntary quarantine with school closure, and shelter-in-place with school closure scenarios 4.5, 23.1, and 200+ homebound adult-days were required to prevent one infection, with the maximum number of adults homebound on a given day in the range of 119K-248K, 465K-499K, 5,388K-5,389K, respectively. Compared to no intervention, school closure only reduced the percentage of the population infected by less than 16% while more than doubling the peak number of adults homebound.Conclusions. Voluntary quarantine combined with school closure significantly reduced the number of infections and deaths with a considerably smaller number of homebound person-days compared to shelter-in-place.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ashwin Aravindakshan ◽  
Jörn Boehnke ◽  
Ehsan Gholami ◽  
Ashutosh Nayak

AbstractTo contain the COVID-19 pandemic, governments introduced strict Non-Pharmaceutical Interventions (NPI) that restricted movement, public gatherings, national and international travel, and shut down large parts of the economy. Yet, the impact of the enforcement and subsequent loosening of these policies on the spread of COVID-19 is not well understood. Accordingly, we measure the impact of NPIs on mitigating disease spread by exploiting the spatio-temporal variations in policy measures across the 16 states of Germany. While this quasi-experiment does not allow for causal identification, each policy’s effect on reducing disease spread provides meaningful insights. We adapt the Susceptible–Exposed–Infected–Recovered model for disease propagation to include data on daily confirmed cases, interstate movement, and social distancing. By combining the model with measures of policy contributions on mobility reduction, we forecast scenarios for relaxing various types of NPIs. Our model finds that in Germany policies that mandated contact restrictions (e.g., movement in public space limited to two persons or people co-living), closure of educational institutions (e.g., schools), and retail outlet closures are associated with the sharpest drops in movement within and across states. Contact restrictions appear to be most effective at lowering COVID-19 cases, while border closures appear to have only minimal effects at mitigating the spread of the disease, even though cross-border travel might have played a role in seeding the disease in the population. We believe that a deeper understanding of the policy effects on mitigating the spread of COVID-19 allows a more accurate forecast of disease spread when NPIs are partially loosened and gives policymakers better data for making informed decisions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Buse Eylul Oruc ◽  
Arden Baxter ◽  
Pinar Keskinocak ◽  
John Asplund ◽  
Nicoleta Serban

Abstract Background Recent research has been conducted by various countries and regions on the impact of non-pharmaceutical interventions (NPIs) on reducing the spread of COVID19. This study evaluates the tradeoffs between potential benefits (e.g., reduction in infection spread and deaths) of NPIs for COVID19 and being homebound (i.e., refraining from interactions outside of the household). Methods An agent-based simulation model, which captures the natural history of the disease at the individual level, and the infection spread via a contact network assuming heterogeneous population mixing in households, peer groups (workplaces, schools), and communities, is adapted to project the disease spread and estimate the number of homebound people and person-days under multiple scenarios, including combinations of shelter-in-place, voluntary quarantine, and school closure in Georgia from March 1 to September 1, 2020. Results Compared to no intervention, under voluntary quarantine, voluntary quarantine with school closure, and shelter-in-place with school closure scenarios 4.5, 23.1, and 200+ homebound adult-days were required to prevent one infection, with the maximum number of adults homebound on a given day in the range of 119 K–248 K, 465 K–499 K, 5388 K-5389 K, respectively. Compared to no intervention, school closure only reduced the percentage of the population infected by less than 16% while more than doubling the peak number of adults homebound. Conclusions Voluntary quarantine combined with school closure significantly reduced the number of infections and deaths with a considerably smaller number of homebound person-days compared to shelter-in-place.


Author(s):  
Ashwin Aravindakshan ◽  
Jörn Boehnke ◽  
Ehsan Gholami ◽  
Ashutosh Nayak

AbstractTo contain the COVID-19 pandemic, several governments introduced strict Non-Pharmaceutical Interventions (NPI) that restricted movement, public gatherings, national and international travel, and shut down large parts of the economy. Yet, the impact of the enforcement and subsequent loosening of these policies on the spread of COVID-19 is not well understood. Accordingly, we measure the impact of NPI on mitigating disease spread by exploiting the spatio-temporal variations in policy measures across the 16 states of Germany. This quasi-experiment identifies each policy’s effect on reducing disease spread. We adapt the SEIR (Susceptible-Exposed-Infected-Recovered) model for disease propagation to include data on daily confirmed cases, intra- and inter-state movement, and social distancing. By combining the model with measures of policy contributions on mobility reduction, we forecast scenarios for relaxing various types of NPIs. Our model finds that, in Germany, policies that mandated contact restrictions (e.g., movement in public space limited to two persons or people co-living), initial business closures (e.g., restaurant closures), stay-at-home orders (e.g., prohibition of non-essential trips), non-essential services (e.g., florists, museums) and retail outlet closures led to the sharpest drops in movement within and across states. Contact restrictions were the most effective at lowering infection rates, while border closures had only minimal effects at mitigating the spread of the disease, even though cross-border travel might have played a role in seeding the disease in the population. We believe that a deeper understanding of the policy effects on mitigating the spread of COVID-19 allows a more accurate forecast of the disease spread when NPIs are (partially) loosened, and thus also better informs policymakers towards making appropriate decisions.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rohan Patil ◽  
Raviraj Dave ◽  
Harsh Patel ◽  
Viraj M. Shah ◽  
Deep Chakrabarti ◽  
...  

Abstract Background The dense social contact networks and high mobility in congested urban areas facilitate the rapid transmission of infectious diseases. Typical mechanistic epidemiological models are either based on uniform mixing with ad-hoc contact processes or need real-time or archived population mobility data to simulate the social networks. However, the rapid and global transmission of the novel coronavirus (SARS-CoV-2) has led to unprecedented lockdowns at global and regional scales, leaving the archived datasets to limited use. Findings While it is often hypothesized that population density is a significant driver in disease propagation, the disparate disease trajectories and infection rates exhibited by the different cities with comparable densities require a high-resolution description of the disease and its drivers. In this study, we explore the impact of creation of containment zones on travel patterns within the city. Further, we use a dynamical network-based infectious disease model to understand the key drivers of disease spread at sub-kilometer scales demonstrated in the city of Ahmedabad, India, which has been classified as a SARS-CoV-2 hotspot. We find that in addition to the contact network and population density, road connectivity patterns and ease of transit are strongly correlated with the rate of transmission of the disease. Given the limited access to real-time traffic data during lockdowns, we generate road connectivity networks using open-source imageries and travel patterns from open-source surveys and government reports. Within the proposed framework, we then analyze the relative merits of social distancing, enforced lockdowns, and enhanced testing and quarantining mitigating the disease spread. Scope Our results suggest that the declaration of micro-containment zones within the city with high road network density combined with enhanced testing can help in containing the outbreaks until clinical interventions become available.


2021 ◽  
pp. 1-41
Author(s):  
W. Walker Hanlon ◽  
Casper Worm Hansen ◽  
Jake Kantor

Using novel weekly mortality data for London spanning 1866-1965, we analyze the changing relationship between temperature and mortality as the city developed. Our main results show that warm weeks led to elevated mortality in the late nineteenth century, mainly due to infant deaths from digestive diseases. However, this pattern largely disappeared after WWI as infant digestive diseases became less prevalent. The resulting change in the temperature-mortality relationship meant that thousands of heat-related deaths—equal to 0.9-1.4 percent of all deaths— were averted. These findings show that improving the disease environment can dramatically alter the impact of high temperature on mortality.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meng-Chun Chang ◽  
Rebecca Kahn ◽  
Yu-An Li ◽  
Cheng-Sheng Lee ◽  
Caroline O. Buckee ◽  
...  

Abstract Background As COVID-19 continues to spread around the world, understanding how patterns of human mobility and connectivity affect outbreak dynamics, especially before outbreaks establish locally, is critical for informing response efforts. In Taiwan, most cases to date were imported or linked to imported cases. Methods In collaboration with Facebook Data for Good, we characterized changes in movement patterns in Taiwan since February 2020, and built metapopulation models that incorporate human movement data to identify the high risk areas of disease spread and assess the potential effects of local travel restrictions in Taiwan. Results We found that mobility changed with the number of local cases in Taiwan in the past few months. For each city, we identified the most highly connected areas that may serve as sources of importation during an outbreak. We showed that the risk of an outbreak in Taiwan is enhanced if initial infections occur around holidays. Intracity travel reductions have a higher impact on the risk of an outbreak than intercity travel reductions, while intercity travel reductions can narrow the scope of the outbreak and help target resources. The timing, duration, and level of travel reduction together determine the impact of travel reductions on the number of infections, and multiple combinations of these can result in similar impact. Conclusions To prepare for the potential spread within Taiwan, we utilized Facebook’s aggregated and anonymized movement and colocation data to identify cities with higher risk of infection and regional importation. We developed an interactive application that allows users to vary inputs and assumptions and shows the spatial spread of the disease and the impact of intercity and intracity travel reduction under different initial conditions. Our results can be used readily if local transmission occurs in Taiwan after relaxation of border control, providing important insights into future disease surveillance and policies for travel restrictions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Emma Stump ◽  
Lauren M. Childs ◽  
Melody Walker

Abstract Background Mosquitoes are vectors for diseases such as dengue, malaria and La Crosse virus that significantly impact the human population. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus, both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion. Methods We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on the literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects. Results We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus. We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus. Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species. Conclusions Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease.


2010 ◽  
Vol 28 (15) ◽  
pp. 2625-2634 ◽  
Author(s):  
Malcolm A. Smith ◽  
Nita L. Seibel ◽  
Sean F. Altekruse ◽  
Lynn A.G. Ries ◽  
Danielle L. Melbert ◽  
...  

Purpose This report provides an overview of current childhood cancer statistics to facilitate analysis of the impact of past research discoveries on outcome and provide essential information for prioritizing future research directions. Methods Incidence and survival data for childhood cancers came from the Surveillance, Epidemiology, and End Results 9 (SEER 9) registries, and mortality data were based on deaths in the United States that were reported by states to the Centers for Disease Control and Prevention by underlying cause. Results Childhood cancer incidence rates increased significantly from 1975 through 2006, with increasing rates for acute lymphoblastic leukemia being most notable. Childhood cancer mortality rates declined by more than 50% between 1975 and 2006. For leukemias and lymphomas, significantly decreasing mortality rates were observed throughout the 32-year period, though the rate of decline slowed somewhat after 1998. For remaining childhood cancers, significantly decreasing mortality rates were observed from 1975 to 1996, with stable rates from 1996 through 2006. Increased survival rates were observed for all categories of childhood cancers studied, with the extent and temporal pace of the increases varying by diagnosis. Conclusion When 1975 age-specific death rates for children are used as a baseline, approximately 38,000 childhood malignant cancer deaths were averted in the United States from 1975 through 2006 as a result of more effective treatments identified and applied during this period. Continued success in reducing childhood cancer mortality will require new treatment paradigms building on an increased understanding of the molecular processes that promote growth and survival of specific childhood cancers.


2021 ◽  
pp. 1-14
Author(s):  
Conor Fearon ◽  
Alfonso Fasano

Studies focusing on the relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19), and Parkinson’s disease (PD) have provided conflicting results. We review the literature to investigate: 1) Are PD patients at higher risk for contracting COVID-19 and are there specific contributing factors to that risk? 2) How does COVID-19 affect PD symptoms? 3) How does COVID-19 present in PD patients? 4) What are the outcomes in PD patients who contract COVID-19? 5) What is the impact of COVID-19 on PD care? 6) Does COVID-19 increase the risk of developing PD? A literature search was performed from 1979 to 2020 using the terms: ‘Parkinson’s disease’ and ‘parkinsonism’ combined with: ‘COVID-19’; ‘SARS-CoV-2’ and ‘coronavirus’. It does not appear that PD is a specific risk factor for COVID-19. There is evidence for direct/indirect effects of SARS-CoV-2 on motor/non-motor symptoms of PD. Although many PD patients present with typical COVID-19 symptoms, some present atypically with isolated worsening of parkinsonian symptoms, requiring increased anti-PD therapy and having worse outcomes. Mortality data on PD patients with COVID-19 is inconclusive (ranging from 5.2%to 100%). Patients with advanced PD appear to be particularly vulnerable. Single cases of acute hypokinetic-rigid syndrome have been described but no other convincing data has been reported. The rapidity with which COVID-19 has swept across the globe has favored the proliferation of studies which lack scientific rigor and the PD literature has not been immune. A coordinated effort is required to assimilate data and answer these questions in larger PD cohorts.


Sign in / Sign up

Export Citation Format

Share Document