triacylglycerol metabolism
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 12)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao Bu ◽  
Jing‑Yuan Lin ◽  
Chang‑Qing Duan ◽  
Mattheos A. G. Koffas ◽  
Guo‑Liang Yan

Abstract Background The limitation of storage space, product cytotoxicity and the competition for precursor are the major challenges for efficiently overproducing carotenoid in engineered non-carotenogenic microorganisms. In this work, to improve β-carotene accumulation in Saccharomyces cerevisiae, a strategy that simultaneous increases cell storage capability and strengthens metabolic flux to carotenoid pathway was developed using exogenous oleic acid (OA) combined with metabolic engineering approaches. Results The direct separation of lipid droplets (LDs), quantitative analysis and genes disruption trial indicated that LDs are major storage locations of β-carotene in S. cerevisiae. However, due to the competition for precursor between β-carotene and LDs-triacylglycerol biosynthesis, enlarging storage space by engineering LDs related genes has minor promotion on β-carotene accumulation. Adding 2 mM OA significantly improved LDs-triacylglycerol metabolism and resulted in 36.4% increase in β-carotene content. The transcriptome analysis was adopted to mine OA-repressible promoters and IZH1 promoter was used to replace native ERG9 promoter to dynamically down-regulate ERG9 expression, which diverted the metabolic flux to β-carotene pathway and achieved additional 31.7% increase in β-carotene content without adversely affecting cell growth. By inducing an extra constitutive β-carotene synthesis pathway for further conversion precursor farnesol to β-carotene, the final strain produced 11.4 mg/g DCW and 142 mg/L of β-carotene, which is 107.3% and 49.5% increase respectively over the parent strain. Conclusions This strategy can be applied in the overproduction of other heterogeneous FPP-derived hydrophobic compounds with similar synthesis and storage mechanisms in S. cerevisiae. Graphical Abstract


2022 ◽  
pp. 112696
Author(s):  
Jinshui Yang ◽  
Wenli Li ◽  
Chao Xing ◽  
Guanlan Xing ◽  
Yingxue Guo ◽  
...  

2021 ◽  
Author(s):  
Xiao Bu ◽  
Jing‑Yuan Lin ◽  
Chang‑Qing Duan ◽  
Mattheos Koffas ◽  
guoliang Yan

Abstract BackgroundThe limitation of storage space, product cytotoxicity and the competition for precursor is the major challenges for efficiently overproducing carotenoid in engineered non-carotenogenic microorganisms. In this work, to improve β-carotene accumulation in Saccharomyces cerevisiae, a strategy that simultaneous increases cell storage capability and strengthens metabolic flux to carotenoid pathway was developed using exogenous oleic acid (OA) combined with metabolic engineering approaches.ResultsThe direct separation of lipid droplets (LDs), quantitative analysis and genes disruption trial indicated that LDs are major storage locations of β-carotene in S. cerevisiae. However, due to the competition for precursor between β-carotene and LDs-triacylglycerol biosynthesis, enlarging storage space by engineering LDs related genes has minor promotion on β-carotene accumulation. Adding 2 mM OA significantly improved LDs-triacylglycerol metabolism and resulted in 36.4% increase in β-carotene content. The transcriptome analysis was adopted to mine OA-repressible promoters and IZH1 promoter was used to replace native ERG9 promoter to dynamically down-regulate ERG9 expression, which diverted the metabolic flux to β-carotene pathway and achieved additional 31.7% increase in β-carotene content without adversely affecting cell growth. By inducing an extra constitutive β-carotene synthesis pathway for further conversion precursor farnesol to β-carotene, the final strain produced 11.4 mg/DCW and 142 mg/L of β-carotene, which is 107.3% and 49.5% increase respectively over the parent strain. ConclusionsThis strategy can be applied in the overproduction of other heterogeneous FPP-derived hydrophobic compounds with similar synthesis and storage mechanisms in S. cerevisiae.


2021 ◽  
pp. 1-27
Author(s):  
Xiaojun Xiang ◽  
Shangzhe Han ◽  
Dan Xu ◽  
Qiuchi Chen ◽  
Renlei Ji ◽  
...  

Abstract Angiopoietin-like 4 (ANGPTL4) is a potent regulator of triacylglycerol metabolism but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In this study, we explored the molecular characterization of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by peroxisome proliferator-activated receptor family (PPAR-α, β and γ) and expression of pparγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signaling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 920
Author(s):  
Sebastian Schieferle ◽  
Beeke Tappe ◽  
Pamela Korte ◽  
Martin J. Mueller ◽  
Susanne Berger

Interaction of plants with the environment affects lipid metabolism. Changes in the pattern of phospholipids have been reported in response to abiotic stress, particularly accumulation of triacylglycerols, but less is known about the alteration of lipid metabolism in response to biotic stress and leaves have been more intensively studied than roots. This work investigates the levels of lipids in roots as well as leaves of Arabidopsis thaliana in response to pathogens and elicitor molecules by UPLC-TOF-MS. Triacylglycerol levels increased in roots and systemically in leaves upon treatment of roots with the fungus Verticillium longisporum. Upon spray infection of leaves with the bacterial pathogen Pseudomonas syringae, triacylglycerols accumulated locally in leaves but not in roots. Treatment of roots with a bacterial lipopolysaccharide elicitor induced a strong triacylglycerol accumulation in roots and leaves. Induction of the expression of the bacterial effector AVRRPM1 resulted in a dramatic increase of triacylglycerol levels in leaves, indicating that elicitor molecules are sufficient to induce accumulation of triacylglycerols. These results give insight into local and systemic changes to lipid metabolism in roots and leaves in response to biotic stresses.


Author(s):  
Inge van der Stelt ◽  
Wenbiao Shi ◽  
Melissa Bekkenkamp-Grovenstein ◽  
Rubén Zapata-Pérez ◽  
Riekelt H. Houtkooper ◽  
...  

Abstract Purpose Vitamin B3 provides nicotinamide adenine dinucleotide (NAD+), an essential coenzyme in oxidoreductase reactions. Severe vitamin B3 deficiency leads to the disease Pellagra, while mild vitamin B3 deficiency has been linked to age-related and metabolic diseases. Mild vitamin B3 deficiency is understudied, especially in females. Therefore, we examined how female mice responded to a diet that induced mild vitamin B3 deficiency in male mice. Methods Female C57BL/6RccHsd mice were subjected for 18 weeks to a diet without vitamin B3 and low but sufficient tryptophan (0.115%) (0NR) and were compared to control female mice on the same diet with the reference dose of vitamin B3 (30NR, 30 mg nicotinamide riboside/ kg diet). Results In the female mice, no differences between the two dietary groups were found in liver nicotinamide mononucleotide (NMN) levels, body composition, whole body energy and substrate metabolism measured by indirect calorimetry, or liver triacylglycerol metabolism. Expression of seven genes that previously were shown to respond to mild vitamin B3 deficiency in male white adipose tissue were not differentially expressed between the female dietary groups, neither was insulin sensitivity. Conclusion We concluded that the female 0NR mice were not vitamin B3 deficient; the role of age, sex and health status is discussed. Demonstrated by clear differences between females and males, the latter showing mild deficiency under the same conditions, this study highlights the importance of studying both sexes.


2021 ◽  
Vol 9 (6) ◽  
pp. 1158
Author(s):  
Kirsten E. Knoll ◽  
Zander Lindeque ◽  
Adetomiwa A. Adeniji ◽  
Carel B. Oosthuizen ◽  
Namrita Lall ◽  
...  

In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.


Author(s):  
Kirsten Elke Knoll ◽  
Zander Lindeque ◽  
Adeniji Ayodele Adetomiwa ◽  
Carel Oosthuizen ◽  
Namrita Lall ◽  
...  

In the interest of developing more effective and safer anti-Tuberculosis treatment, we aimed for a better understanding of the antimycobacterial action of ciprofloxacin against Mycobacterium tuberculosis (Mtb). We used GCxGC-TOF-MS and well described metabolomics statistical approaches, to investigate and compare the metabolic profiles of Mtb in the presence and absence of the drug. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol and triacylglycerol metabolism seen in this group, supports the previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, and the reduction in the glucogenic amino acids specifically, indicates a flux towards DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of actions of various drugs and possibly adaptations by Mtb resulting in resistance.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2818
Author(s):  
Ju-Young Lee ◽  
Kwang-Hyeon Liu ◽  
Yunhi Cho ◽  
Kun-Pyo Kim

Triacylglycerol (TAG) metabolism is related to the acyl-ceramide (Cer) synthesis and corneocyte lipid envelope (CLE) formation involved in maintaining the epidermal barrier. Prompted by the recovery of a disrupted epidermal barrier with dietary borage oil (BO: 40.9% linoleic acid (LNA) and 24.0% γ-linolenic acid (GLA)) in essential fatty acid (EFA) deficiency, lipidomic and transcriptome analyses and subsequent quantitative RT-PCR were performed to determine the effects of borage oil (BO) on TAG content and species, and the gene expression related to overall lipid metabolism. Dietary BO for 2 weeks in EFA-deficient guinea pigs increased the total TAG content, including the TAG species esterified LNA, GLA, and their C20 metabolized fatty acids. Moreover, the expression levels of genes in the monoacylglycerol and glycerol-3-phosphate pathways, two major pathways of TAG synthesis, increased, along with those of TAG lipase, acyl-Cer synthesis, and CLE formation. Dietary BO enhanced TAG content, the gene expression of TAG metabolism, acyl-Cer synthesis, and CLE formation.


Sign in / Sign up

Export Citation Format

Share Document