scholarly journals Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 628
Author(s):  
Inga Matulyte ◽  
Giedre Kasparaviciene ◽  
Jurga Bernatoniene

Essential oils are volatile liquids which evaporate and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect nutmeg essential oil from environmental factors by encapsulation (shell material, sodium alginate) and determine the influence of crosslinker concentration (2%, 5% calcium chloride), different emulsifiers (polysorbate 80, sucrose esters), and magnesium aluminometasilicate on microcapsule physical parameters, encapsulation efficiency (EE), swelling index (SI), and other parameters. Nutmeg essential oil (NEO)-loaded calcium alginate microcapsules were prepared by extrusion. The swelling test was performed with and without enzymes in simulated gastric, intestinal, and gastrointestinal media. This study shows that the crosslinker concentration has a significant influence on EE, with 2% calcium chloride solution being more effective than 5%, and capsules being softer with 2% crosslinker solution. Using sucrose esters, EE is higher when polysorbate 80 is used. The swelling index is nearly three times higher in an intestinal medium without enzymes than in the medium with pancreatin. Microcapsule physical parameters depend on the excipients: the hardest capsules were obtained with the biggest amount of sodium alginate; the largest with magnesium aluminometasilicate. Sucrose esters and magnesium aluminometasilicate are new materials used in extrusion.

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6304
Author(s):  
Juste Baranauskaite ◽  
Mehmet Ali Ockun ◽  
Burcu Uner ◽  
Cetin Tas ◽  
Liudas Ivanauskas

Essential oils have a high volatility that leads to evaporation and loss of their pharmacological effect when exposed to the environment. The objectives of the present work were to prepare microcapsules with oregano essential oil by extrusion using sodium alginate as a shell material and non-ionic surfactant polysorbate 80 as an emulsifier to stabilize the emulsion. The present study was aimed to evaluate the physical parameters of microcapsules and to compare the influence of the amount of emulsifier and the essential oil-to-emulsifier ratio on the capsules’ physical parameters and encapsulation efficiency; to our knowledge, the existing research had not yet revealed whether unstable emulsion affects the encapsulation efficiency of oregano essential oil. This study showed that increasing the emulsifier amount in the formulation significantly influenced encapsulation efficiency and particle size. Moreover, increasing the emulsion stability positively influenced the encapsulation efficiency. The emulsion creaming index depended on the emulsifier amount in the formulation: the highest creaming index (%) was obtained with the highest amount of polysorbate 80. However, the essential oil-to-polysorbate 80 ratio and essential oil amount did not affect the hardness of the microcapsules (p > 0.05). In conclusion, the obtained results could be promising information for production of microcapsules. Despite the fact that microencapsulation of essential oils is a promising and extremely attractive application area for the pharmaceutical industry, further basic research needs to be carried out.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2882
Author(s):  
Wen-Chi Lu ◽  
Fu-Sheng Chuang ◽  
Manikandan Venkatesan ◽  
Chia-Jung Cho ◽  
Po-Yun Chen ◽  
...  

The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress–strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2–24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 873
Author(s):  
Inga Matulyte ◽  
Mindaugas Marksa ◽  
Jurga Bernatoniene

Chewable gel tablets are a dosed pharmaceutical form, which can have an active substance, pharmacological effect, or value of nutrition. The texture of these tablets is soft, springy, flexible, and elastic—this is influenced by the chosen ingredients. The aim of this study was to prepare chewable gel tablets with nutmeg essential oil-loaded microcapsules and determine the volatile compounds released from this pharmaceutical form. Gel tablets were prepared by using gelatin as basis, nutmeg essential oil as active compound, and natural ingredients: thyme-sugar syrup, thyme extract, and citric acid as taste and color additives. Texture properties were measured by a texture analyzer. The release of volatile compounds from nutmeg essential oil and gel tablets were analyzed by headspace-gas chromatography with mass spectroscopy in control and artificial saliva conditions in vitro. Nutmeg essential oil microcapsules had influence on the gel tablet’s physical properties (p < 0.05, by comparing tablets without glycerol and relative sample with glycerol); glycerol protects the tablets from the formation of sugar crystals on top and keeps good physical parameters (p < 0.05). A total of 12 volatile compounds were identified in nutmeg essential oil, and the six compounds with the highest amounts were selected as controls. Gel tablets prolong the release time of volatile compounds and reduce the amount of the compounds compared to the microcapsules (p < 0.05).


2021 ◽  
Vol 135 ◽  
pp. 111229
Author(s):  
Rokas Mickus ◽  
Gintarė Jančiukė ◽  
Vytautas Raškevičius ◽  
Valeryia Mikalayeva ◽  
Inga Matulytė ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1666
Author(s):  
Stefanos Hatzilazarou ◽  
Stefanos Kostas ◽  
Theodora Nendou ◽  
Athanasios Economou

The present study demonstrates the potential of the alginate encapsulation of shoot tips and nodal segments of Gardenia jasminoides Ellis, the short-term cold storage of artificial seeds and subsequent successful conversion to desirable, uniform and genetically stable plantlets. Shoot tips and first-node segments below them, derived from shoots of in vitro cultures, responded better than second-to-fourth-node segments on agar-solidified Murashige and Skoog (MS) nutrient medium and thus, they were used as explants for alginate encapsulation. Explant encapsulation in 2.5% sodium alginate in combination with 50 mM of calcium chloride resulted in the production of soft beads, while hardening in 100 mM of calcium chloride formed firm beads of uniform globular shape, suitable for handling. The addition of liquid MS nutrient medium in the sodium alginate solution doubled the subsequent germination response of the beads. The maintenance of alginate beads under light favored their germination response compared to maintenance in darkness. Encapsulated shoot tip explants of gardenia, which were stored at 4 °C for 4, 8 or 12 weeks, showed a gradual decline in their regeneration response (73.3, 68.9, 53.3%, respectively), whereas, non-encapsulated explants (naked), stored under the same time durations of cold conditions, exhibited a sharp decline in regeneration response up to entirely zeroing (48.9, 11.1, 0.0%, respectively). Shoots, derived from 12-week cold-stored encapsulated explants, were easily rooted in solid MS nutrient medium with the addition of 0.5 μM of Indole-3-acetic acid (IAA) and after transplantation of the rooted plantlets individually to pots containing a peat–perlite (3:1, v/v) substrate, they were successfully acclimatized in the greenhouse under the gradual reduction of 75 or 50% shading with survival rates of 95–100%. The genetic stability of the acclimatized plantlets was assessed and compared with the mother plant using inter simple sequence repeat (ISSR) markers. ISSR analysis confirmed that all regenerated plantlets were genetically identical to the mother plant. This procedure of artificial seed production could be useful for the short-term storage of germplasm and the production of genetically identical and stable plants as an alternative method of micropropagation in Gardenia jasminoides.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5780-5793
Author(s):  
Ji-Soo Park ◽  
Chan-Woo Park ◽  
Song-Yi Han ◽  
Eun-Ah Lee ◽  
Azelia Wulan Cindradewi ◽  
...  

Cellulose nanocrystals (CNCs) were wet-spun in a coagulation bath for the fabrication of microfilaments, and the effect of sodium alginate (AL) addition on the wet-spinnability and properties of the microcomposite filament was investigated. The CNC suspension exhibited excellent wet-spinnability in calcium chloride (CaCl2) solution, and the addition of AL in CNC suspension resulted in the enhancement of the wet-spinnability of CNCs. As the AL content increased from 3% to 10%, the average diameter of the microcomposite filament decreased, and its tensile properties deteriorated. The increased spinning rate caused an increase in the orientation index of CNCs, resulting in an improvement in the tensile properties of the microcomposite filament.


Author(s):  
Sreeja C Nair ◽  
Karthika Ramesh ◽  
Krishnapriya M ◽  
Asha Paul

ABSTRACTObjective: The objective behind our study is that a mucoadhesive rectal hydrogel chitosan sodium alginate carbamazepine (CBZ) microspheres forthe purpose of controlled release for the treatment of epilepsy to avoid the possible side effects.Methods: The study was conducted to formulate controlled release chitosan sodium alginate CBZ microspheres with the dispersion of CBZ into thenatural polymers chitosan and sodium alginate forming microspheres conducting along with their evaluation studies.Results: The formulated microspheres were subjected to various evaluation parameters, and all the physical parameters examined are within theacceptable limits. Further, the optimized microsphere formulation (CM5) was characterized. Hence, the developed optimized microsphere formulation(CM5) seems to be a viable substitute to conventional drug delivery system for the effective management of epilepsy.Conclusion: The prepared formulation also provides a desired CBZ loaded sodium alginate microspheres with the controlled release drug delivery.Keywords: Carbamazepine, Sodium alginate microspheres, Particle size.


2019 ◽  
Vol 54 ◽  
pp. 101352 ◽  
Author(s):  
Seyyed Mojtaba Mousavi ◽  
Seyyed Alireza Hashemi ◽  
Seeram Ramakrishna ◽  
Hossein Esmaeili ◽  
Sonia Bahrani ◽  
...  

Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


2015 ◽  
Vol 2 (1) ◽  
pp. 118-120
Author(s):  
Durgha H ◽  
Ramya G ◽  
Gogul Ramanth M ◽  
Thirugnanasampandan R

Young nodal explants (0.5-1cm) of Salvia sclarea L. was used for synthetic seed preparation.Synthetic seeds were prepared using 5% sodium alginate and 1.11% calcium chloride. Seed germination was observed on MS medium fortified with 1.4µM GA3+4.4µM BA after twenty days of culture. Further multiple shoot induction was observed after fifteen days of shootinduction.


Sign in / Sign up

Export Citation Format

Share Document