scholarly journals Time Scales and Mechanisms for the Tropical Pacific Response to Global Warming: A Tug of War between the Ocean Thermostat and Weaker Walker

2020 ◽  
Vol 33 (14) ◽  
pp. 6101-6118 ◽  
Author(s):  
Ulla K. Heede ◽  
Alexey V. Fedorov ◽  
Natalie J. Burls

AbstractDifferent oceanic and atmospheric mechanisms have been proposed to describe the response of the tropical Pacific to global warming, yet large uncertainties persist on their relative importance and potential interaction. Here, we use idealized experiments forced with a wide range of both abrupt and gradual CO2 increases in a coupled climate model (CESM) together with a simplified box model to explore the interaction between, and time scales of, different mechanisms driving Walker circulation changes. We find a robust transient response to CO2 forcing across all simulations, lasting between 20 and 100 years, depending on how abruptly the system is perturbed. This initial response is characterized by the strengthening of the Indo-Pacific zonal SST gradient and a westward shift of the Walker cell. In contrast, the equilibrium response, emerging after 50–100 years, is characterized by a warmer cold tongue, reduced zonal winds, and a weaker Walker cell. The magnitude of the equilibrium response in the fully coupled model is set primarily by enhanced extratropical warming and weaker oceanic subtropical cells, reducing the supply of cold water to equatorial upwelling. In contrast, in the slab ocean simulations, the weakening of the Walker cell is more modest and driven by differential evaporative cooling along the equator. The “weaker Walker” mechanism implied by atmospheric energetics is also observed for the midtroposphere vertical velocity, but its surface manifestation is not robust. Correctly diagnosing the balance between these transient and equilibrium responses will improve understanding of ongoing and future climate change in the tropical Pacific.

2009 ◽  
Vol 22 (1) ◽  
pp. 71-92 ◽  
Author(s):  
W. Park ◽  
N. Keenlyside ◽  
M. Latif ◽  
A. Ströh ◽  
R. Redler ◽  
...  

Abstract A new, non-flux-corrected, global climate model is introduced, the Kiel Climate Model (KCM), which will be used to study internal climate variability from interannual to millennial time scales and climate predictability of the first and second kind. The version described here is a coarse-resolution version that will be employed in extended-range integrations of several millennia. KCM’s performance in the tropical Pacific with respect to mean state, annual cycle, and El Niño–Southern Oscillation (ENSO) is described. Additionally, the tropical Pacific response to global warming is studied. Overall, climate drift in a multicentury control integration is small. However, KCM exhibits an equatorial cold bias at the surface of the order 1°C, while strong warm biases of several degrees are simulated in the eastern tropical Pacific on both sides off the equator, with maxima near the coasts. The annual and semiannual cycles are realistically simulated in the eastern and western equatorial Pacific, respectively. ENSO performance compares favorably to observations with respect to both amplitude and period. An ensemble of eight greenhouse warming simulations was performed, in which the CO2 concentration was increased by 1% yr−1 until doubling was reached, and stabilized thereafter. Warming of equatorial Pacific sea surface temperature (SST) is, to first order, zonally symmetric and leads to a sharpening of the thermocline. ENSO variability increases because of global warming: during the 30-yr period after CO2 doubling, the ensemble mean standard deviation of Niño-3 SST anomalies is increased by 26% relative to the control, and power in the ENSO band is almost doubled. The increased variability is due to both a strengthened (22%) thermocline feedback and an enhanced (52%) atmospheric sensitivity to SST; both are associated with changes in the basic state. Although variability increases in the mean, there is a large spread among ensemble members and hence a finite probability that in the “model world” no change in ENSO would be observed.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2014 ◽  
Vol 27 (21) ◽  
pp. 7953-7975 ◽  
Author(s):  
Bradfield Lyon

Abstract This paper provides a review of atmospheric circulation and sea surface temperature (SST) conditions that are associated with meteorological drought on the seasonal time scale in the Greater Horn of Africa (the region 10°S–15°N, 30°–52°E). New findings regarding a post-1998 increase in drought frequency during the March–May (MAM) “long rains” are also reported. The period 1950–2010 is emphasized, although rainfall and SST data from 1901–2010 are used to place the recent long rains decline in a multidecadal context. For the latter case, climate model simulations and isolated basin SST experiments are also utilized. Climatologically, rainfall exhibits a unimodal June–August (JJA) maximum in west-central Ethiopia with a generally bimodal [MAM and October–December (OND) maxima] distribution in locations to the south and east. Emphasis will be on these three seasons. SST anomalies in the tropical Pacific and Indian Oceans show the strongest association with drought during OND in locations having a bimodal annual cycle, with weaker associations during MAM. The influence of the El Niño–Southern Oscillation (ENSO) phenomenon critically depends on its ability to affect SSTs outside the Pacific. Salient features of the anomalous atmospheric circulation during drought events in different locations and seasons are discussed. The post-1998 decline in the long rains is found to be driven strongly (although not necessarily exclusively) by natural multidecadal variability in the tropical Pacific rather than anthropogenic climate change. This conclusion is supported by observational analyses and climate model experiments, which are presented.


2019 ◽  
Vol 36 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Lingsheng Meng ◽  
Wei Zhuang ◽  
Weiwei Zhang ◽  
Angela Ditri ◽  
Xiao-Hai Yan

AbstractSea level changes within wide temporal–spatial scales have great influence on oceanic and atmospheric circulations. Efforts have been made to identify long-term sea level trend and regional sea level variations on different time scales. A nonuniform sea level rise in the tropical Pacific and the strengthening of the easterly trade winds from 1993 to 2012 have been widely reported. It is well documented that sea level in the tropical Pacific is associated with the typical climate modes. However, sea level change on interannual and decadal time scales still requires more research. In this study, the Pacific sea level anomaly (SLA) was decomposed into interannual and decadal time scales via an ensemble empirical mode decomposition (EEMD) method. The temporal–spatial features of the SLA variability in the Pacific were examined and were closely associated with climate variability modes. Moreover, decadal SLA oscillations in the Pacific Ocean were identified during 1993–2016, with the phase reversals around 2000, 2004, and 2012. In the tropical Pacific, large sea level variations in the western and central basin were a result of changes in the equatorial wind stress. Moreover, coherent decadal changes could also be seen in wind stress, sea surface temperature (SST), subtropical cells (STCs), and thermocline depth. Our work provided a new way to illustrate the interannual and decadal sea level variations in the Pacific Ocean and suggested a coupled atmosphere–ocean variability on a decadal time scale in the tropical region with two cycles from 1993 to 2016.


2020 ◽  
Author(s):  
Ingo Richter ◽  
Hiroki Tokinaga

<p>General circulation models of the Coupled Model Intercomparison Project Phase 6 (CMIP6) are examined with respect to their ability to simulate the mean state and variability of the tropical Atlantic, as well as its linkage to the tropical Pacific. While, on average, mean state biases have improved little relative to the previous intercomparison (CMIP5), there are now a few models with very small biases. In particular the equatorial Atlantic warm SST and westerly wind biases are mostly eliminated in these models. Furthermore, interannual variability in the equatorial and subtropical Atlantic is quite realistic in a number of CMIP6 models, which suggests that they should be useful tools for understanding and predicting variability patterns. The evolution of equatorial Atlantic biases follows the same pattern as in previous model generations, with westerly wind biases during boreal spring preceding warm sea-surface temperature (SST) biases in the east during boreal summer. A substantial portion of the westerly wind bias exists already in atmosphere-only simulations forced with observed SST, suggesting an atmospheric origin. While variability is relatively realistic in many models, SSTs seem less responsive to wind forcing than observed, both on the equator and in the subtropics, possibly due to an excessively deep mixed layer originating in the oceanic component. Thus models with realistic SST amplitude tend to have excessive wind amplitude. The models with the smallest mean state biases all have relatively high resolution but there are also a few low-resolution models that perform similarly well, indicating that resolution is not the only way toward reducing tropical Atlantic biases. The results also show a relatively weak link between mean state biases and the quality of the simulated variability. The linkage to the tropical Pacific shows a wide range of behaviors across models, indicating the need for further model improvement.</p>


2003 ◽  
Vol 16 (13) ◽  
pp. 2138-2158 ◽  
Author(s):  
Gerald A. Meehl ◽  
Julie M. Arblaster ◽  
Johannes Loschnigg

Abstract The transitions (from relatively strong to relatively weak monsoon) in the tropospheric biennial oscillation (TBO) occur in northern spring for the south Asian or Indian monsoon and northern fall for the Australian monsoon involving coupled land–atmosphere–ocean processes over a large area of the Indo-Pacific region. Transitions from March–May (MAM) to June–September (JJAS) tend to set the system for the next year, with a transition to the opposite sign the following year. Previous analyses of observed data and GCM sensitivity experiments have demonstrated that the TBO (with roughly a 2–3-yr period) encompasses most ENSO years (with their well-known biennial tendency). In addition, there are other years, including many Indian Ocean dipole (or zonal mode) events, that contribute to biennial transitions. Results presented here from observations for composites of TBO evolution confirm earlier results that the Indian and Pacific SST forcings are more dominant in the TBO than circulation and meridional temperature gradient anomalies over Asia. A fundamental element of the TBO is the large-scale east–west atmospheric circulation (the Walker circulation) that links anomalous convection and precipitation, winds, and ocean dynamics across the Indian and Pacific sectors. This circulation connects convection over the Asian–Australian monsoon regions both to the central and eastern Pacific (the eastern Walker cell), and to the central and western Indian Ocean (the western Walker cell). Analyses of upper-ocean data confirm previous results and show that ENSO El Niño and La Niña events as well as Indian Ocean SST dipole (or zonal mode) events are often large-amplitude excursions of the TBO in the tropical Pacific and Indian Oceans, respectively, associated with anomalous eastern and western Walker cell circulations, coupled ocean dynamics, and upper-ocean temperature and heat content anomalies. Other years with similar but lower-amplitude signals in the tropical Pacific and Indian Oceans also contribute to the TBO. Observed upper-ocean data for the Indian Ocean show that slowly eastward-propagating equatorial ocean heat content anomalies, westward-propagating ocean Rossby waves south of the equator, and anomalous cross-equatorial ocean heat transports contribute to the heat content anomalies in the Indian Ocean and thus to the ocean memory and consequent SST anomalies, which are an essential part of the TBO.


Sign in / Sign up

Export Citation Format

Share Document