scholarly journals Ultrasonic Investigation of Binary Solutions of Petrolium And Its Products

Author(s):  
Deepak A. Zatale ◽  
Sameer M. Bagade ◽  
Ajay R. Chaware

<p>Experiment values of densities and ultrasonic speed of petroleum product Gasoline (Petrol) and 2T Oil were taken in different volume concentrations from 5%, 10%------, and 95% at different temperatures from 298.15K to 318.15K having difference of 5K. From the experimental data, Apparent Molar Compressibility (<em>ϕ<sub>K</sub></em>), Relative Association (<em>R<sub>A</sub></em>), Solvation Number (<em>S<sub>n</sub></em>), Free Energy of Activation (<em>ΔE</em>), Excess Adiabatic Compressibility (<em>β<sub>ad</sub><sup>E</sup></em>), Excess Volume (<em>V<sup>E</sup></em>), Excess Free Length (<em>L<sub>f</sub><sup>E</sup></em>) have been computed. These parameters are used to focus light on the nature of component molecules of binary liquids and the excess functions are found to be sensitive to the nature and extent of the intermolecular interactions taking place in these binary mixtures.</p>

2011 ◽  
Vol 8 (2) ◽  
pp. 762-766
Author(s):  
Pooja P. Adroja ◽  
S. P. Gami ◽  
J. P. Patel ◽  
P. H. Parsania

The density (ρ), viscosity (η) and ultrasonic speed (U) (2 MHz) of chloroform, THF, ethyl alcohol, ethyl acetate, 1,4-dioxane and 1,1ʼ-binaphthalene-2,2ʼ-diyl diacetate (DBNA) solutions have been determined at 308.15 K. Various acoustical parameters namely specific acoustical impedance (Z), adiabatic compressibility (κa), Van der Waals constant (b), intermolecular path length (Lf), internal pressure (π), Raoʼs molar sound function (R), relaxation time (τ), classical absorption coefficient (α/f2)cland solvation number (Sn) have been derived from ρ, η and U data and correlated with concentration (C). A fairly good to excellent correlation has been observed between a particular parameter and C. Linear increase of Z, R, b, (α/f2)cland τ (except EA) (R2= 0.90 – 0.999) and linear decrease of κs, π and Lf(R2= 0.947 – 0.995) with C supported existence of powerful molecular interactions in the solutions and further supported by nonlinear increase of Snwith C. A fairly constant Gibbs free energy of activation has been observed in all the solvent systems studied.


Author(s):  
Darshana Rodric

Abstract: Ultrasonic measurements of samarium soaps (palmitate and myristate) have been carried out in a mixture of benzene and DMSO (70%-30% v/v) to determine the critical micellar concentration(CMC), soap-solvent interaction and various acoustic parameters. The results show that ultrasonic velocity, intermolecular free length, adiabatic compressibility, adiabatic molar volume and apparent molar compressibility decrease while specific acoustic impedance, relative association and solvation number increase with increase in soap concentration. The results of ultrasonic measurements have also been explained in terms of well-known equations. Keywords: Ultrasonic measurements, molecular interactions, samarium soaps, compressibility, critical micellar concentration(CMC).


Author(s):  
B.J. Gangani ◽  
Parsotam H. Parsania

The density, viscosity and ultrasonic speed (2MHz) of chloroform and symmetric double Schiff bases have been investigated at 308.15K. Various acoustical parameters such as specific acoustical impedance (Z), adiabatic compressibility (Кa), Rao’s molarsound function (Rm), Vander Waals constant (b), internal pressure (π), free volume (Vf), intermolecular free path length (Lf), classical absorption coefficient (α/f2)Cl) and viscous relaxation time (τ) were determined using ultrasonic speed (U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Increasing linear or nonlinear trends of (Z, Rm, b, τ and (α/f2)Cl) and decreasing trend of Кa, Lf,, π and Vf with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions and solvophilic nature of the Schiff bases, which is further supported by the positive values of solvation number. The nature and position of substituent also affected the strength of molecular interactions.


1985 ◽  
Vol 63 (5) ◽  
pp. 1024-1030 ◽  
Author(s):  
Ramamurthy Palepu ◽  
Joan Oliver ◽  
Brian MacKinnon

Densities and viscosities were determined for the binary systems of m-cresol with aniline, N-methylaniline, N, N-dimethylaniline, N-ethylaniline, and N, N-diethylaniline at five different temperatures. From the experimental results, the excess volume, excess viscosity, excess molar free energy of activation of flow, excess partial molar volume, and partial molar volumes were calculated. Also various thermodynamic parameters of activation of flow were calculated from the dependence of viscosity on temperature. The deviations from ideality of thermodynamic and transport functions are explained on the basis of molecular interactions between the components of the mixture.


Author(s):  
Bhavin. B. Dhaduk ◽  
Parsotam H. Parsania

Density (ρ), viscosity (η), ultrasonic speed (U), and thermo-acoustical parameters such as specific acoustical impedance (Z), adiabatic compressibility (κa), internal pressure (π), free volume (Vf), inter molecular free path length (Lf), Van der Waals constant (b), viscous relaxation time (τ), classical absorption coefficient (α/f2)cl, Rao’s molar sound function (Rm), solvation number (Sn), Gibbs free energy of activation (ΔG*), enthalpy of activation (ΔH*) and entropy of activation (ΔS*) of biologically active 1,1’-bis (3-methyl-4-carboxyethylphenoxy) cyclohexane (BMCPC) in 1,4-dioxane (DO), ethyl acetate (EA), tetrahydrofuran (THF) have been studied at four different temperatures: 298, 303, 308 and 313 K to understand the molecular interactions in the solutions. A good to excellent correlation between a given parameter and concentration is observed at all temperatures and solvent systems studied. Linear increase or decrease [except (α/f2)cl ] of acoustical parameters with concentration and temperature indicated the existence of strong molecular interactions. ΔG* decreased linearly with increasing concentration and temperature in DO and EA systems and increased with temperature in THF system. ΔH* and ΔS* are found practically concentration independent in case of DO and EA system but both are found concentration dependent in THF system.


Author(s):  
Shipra Baluja ◽  
Elham Abdullah Mo Alnayab

Measurement of ultrasonic velocity, density and viscosity of solutions of Tetra Butyl Ammonium Bromide have been carried outin different solvents (water, methanol, ethanol, 1-propanol and 1-butanol) as functions of concentration (1 to 0.1 M) at different temperatures (298.15 K to 318.15 K). Using these experimental data, various acoustical and apparent parameters such as acoustical impedance, intermolecular free length, adiabatic compressibility, molar compressibility, Van der Waals constant, relaxation strength, apparent molar isentropic compressibility, apparent molar volume have been evaluated. Further, some thermodynamic parameters such as Gibbs free energy of activation, enthalpy and entropy of activation have been evaluated. All these parameters have been evaluated to understand type of interactions present in studied solutions.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sk. Fakruddin ◽  
Ch. Srinivasu ◽  
B. R. Venkateswara Rao ◽  
K. Narendra

The ultrasonic velocity and density of binary liquid mixtures of quinoline with o-xylene, m-xylene, and p-xylene have been measured over the entire range of composition at = 303.15, 308.15, 313.15, and 318.15 K. Using these data, various parameters like adiabatic compressibility (β), intermolecular free length (), and acoustic impedance () and some excess parameters like excess adiabatic compressibility (), excess intermolecular free length (), excess acoustic impedance (), and excess ultrasonic velocity () have been calculated for all the three mixtures. The calculated deviations and excess functions have been fitted to Redlich-Kister polynomial equation. The observed deviations have been explained on the basis of the intermolecular interactions present in these mixtures.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Richa Saxena ◽  
S C Bhatt ◽  
Manish Uniyal ◽  
S C Nautiyal

Ultrasonic investigation provides a wealth of information in understanding the intermolecular interaction of solute and solvent. An attempt has been made to measure density, viscosity and ultrasonic velocity of aqueous solution of polyvinyl alcohol of molecular weight approximately 140,000 at different temperatures 35οC, 40oC, 45οC, 50oC, 55οC, 60oC, 65οC at 0.8% concentration. Ultrasonic velocity is measured using ultrasonic interferometer at 1 MHz frequency. The acoustical parameters like, adiabatic compressibility, acoustic impedance, intermolecular free length and relaxation time have been calculated at different temperatures. These parameters were used to understand the behaviour of solute and solvent.


Author(s):  
P.B. Morey ◽  
A.B. Naik

The nature and the relative strength of the intermolecular interaction between the components of the liquid mixtures have been successfully investigated by ultrasonic method. In present study, the densities (ρ), ultrasonic velocities (u), viscosity (ɳ) and refractive index (nD) in a ternary liquid mixture of 2-aminothiazole with N,N-dimethylformamide (DMF) in water have been measured at 303.15, 308.15, 313.15,318.15 and 323.15 K respectively, over the entire composition range by using densitometer, ultrasonic interferometer, viscometer and refractmeter respectively. The measured data have been used to compute the various thermo-acoustic parameters using the standard relations namely, adiabatic compressibility (βs), intermolecular free length (Lf), specific acoustic Impedance (Z),Wada constant (W), molar sound velocity (R), relative association (RA), apparent molar compressibility (),apparent molar volume () viscosity relaxation time (Г),absorption coefficient, internal pressure (ᴨ),free volume (Vf),Gibb҆ s free energy (∆G) and specific refraction (r), etc. The results have been analyzed on the basis of variation in thermodynamic parameters. These parameters are useful for explaining the molecular association and interaction between the components of ternary liquid mixtures. The variation in densities and ultrasonic velocities with concentrations in the system show similar trends for evaluated parameters of the constituents in ternary mixture at different temperatures. The results have been interpreted in terms of solute-solvent and solvent-solvent interaction.


2011 ◽  
Vol 324 ◽  
pp. 166-169 ◽  
Author(s):  
Farah Zeitouni ◽  
Gehan El-Subruiti ◽  
Ghassan Younes ◽  
Mohammad Amira

The rate of aquation of bromopentaammine cobalt(III) ion in the presence of different types of dicarboxylate solutions containing tert-butanol (40% V/V) have been measured spectrophotometrically at different temperatures (30-600°C) in the light of the effects of ion-pairing on reaction rates and mechanism. The thermodynamic and extrathermodynamic parameters of activation have been calculated and discussed in terms of solvent effect on the ion-pair aquation reaction. The free energy of activation ∆Gip* is more or less linearly varied among the studied dicarboxylate ion-pairing ligands indicating the presence of compensation effect between ∆Hip* and ∆Sip*. Comparing the kip values with respect of different buffers at 40% of ter-butanol is introduced.


Sign in / Sign up

Export Citation Format

Share Document