scholarly journals The Basic Theorem of Temperature-Dependent Processes

Thermo ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 45-60
Author(s):  
Valentin N. Sapunov ◽  
Eugene A. Saveljev ◽  
Mikhail S. Voronov ◽  
Markus Valtiner ◽  
Wolfgang Linert

The basic theorem of isokinetic relationships is formulated as “if there exists a linear correlation “structure∼properties” at two temperatures, the point of their intersection will be a common point for the same correlation at other temperatures, until the Arrhenius law is violated”. The theorem is valid in various regions of thermally activated processes, in which only one parameter changes. A detailed examination of the consequences of this theorem showed that it is easy to formulate a number of empirical regularities known as the “kinetic compensation effect”, the well-known formula of the Meyer–Neldel rule, or the so-called concept of “multi-excitation entropy”. In a series of similar processes, we examined the effect of different variable parameters of the process on the free energy of activation, and we discuss possible applications.

1994 ◽  
Vol 332 ◽  
Author(s):  
W. J. Kulnis ◽  
W. N. Unertl

ABSTRACTWe have constructed an inexpensive sample mounting stage for studies of temperature dependent processes in a surface force microscope (SFM). The stage is constructed from a Peltier thermoelectric heater secured to a standard SFM mounting stage with silver paint. The sample temperature can be varied from room temperature to about 100°C thus making it possible to use the SFM to observe thermally activated processes at lateral spatial resolutions of 10-20 nm. Approximately 10 minutes is required to reach thermal equilibrium following a 5°C temperature change. The lateral magnification must be calibrated at each temperature. We illustrate the capabilities of the stage with images of polystyrene spheres just below their glass transition temperature of 100°C.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4215
Author(s):  
Roxana E. Patru ◽  
Hamidreza Khassaf ◽  
Iuliana Pasuk ◽  
Mihaela Botea ◽  
Lucian Trupina ◽  
...  

The frequency and temperature dependence of dielectric properties of CH3NH3PbI3 (MAPI) crystals have been studied and analyzed in connection with temperature-dependent structural studies. The obtained results bring arguments for the existence of ferroelectricity and aim to complete the current knowledge on the thermally activated conduction mechanisms, in dark equilibrium and in the presence of a small external a.c. electric field. The study correlates the frequency-dispersive dielectric spectra with the conduction mechanisms and their relaxation processes, as well as with the different transport regimes indicated by the Nyquist plots. The different energy barriers revealed by the impedance spectroscopy highlight the dominant transport mechanisms in different frequency and temperature ranges, being associated with the bulk of the grains, their boundaries, and/or the electrodes’ interfaces.


1991 ◽  
Vol 113 (4) ◽  
pp. 388-394 ◽  
Author(s):  
O. B. Fedoseev ◽  
S. Malkin

An analysis is presented to predict the hardness distribution in the subsurface of hardened steel due to tempering and rehardening associated with high temperatures generated in grinding. The grinding temperatures are modeled with a triangular heat source at the grinding zone and temperature-dependent thermal properties. The temperature history, including the effect of multiple grinding passes, is coupled with thermally activated reaction equations for tempering and for reaustenitization which is the rate controlling step in rehardening. Experimental results from the literature are found to be in good agreement with the analytical predictions.


1997 ◽  
Vol 52 (5) ◽  
pp. 447-456
Author(s):  
Ingo Biertümpel ◽  
Hans-Herbert Schmidtke

Abstract Lifetime measurements down to nearly liquid helium temperatures are used for determining energy levels and transition rates between excited levels and relaxations into the ground state. Energies are obtained from temperature dependent lifetimes by fitting experimental curves to model functions pertinent for thermally activated processes. Rates are calculated from solutions of rate equations. Similar parameters for pure and doped Pt(IV) hexahalogeno complexes indicate that excited levels largely belong to molecular units. Some of the rates between excited states are only somewhat larger than decay rates into the ground state, which is a consequence of the polyexponential decay measured also at low temperature (2 K). In the series of halogen complexes, the rates between spinorbit levels resulting from 3T1g increase from fluorine to bromine, although energy splittings become larger. Due to the decreasing population of higher excited states in this series, K^PtFö shows a tri-exponential, K2PtCl6 a bi-exponential and FoPtBr6 a mono-exponential decay. In the latter case the population density of higher excited states relaxes so fast that emission occurs primarily from the lowest excited Γ3(3T1g) level. Phase transitions and emission from chromophores on different sites can also be observed.


Author(s):  
E. Mantelli ◽  
C. Schoof

The onset of sliding in ice sheets may not take the form of a sharp boundary between regions at the melting point, in which sliding is permitted, and regions below that temperature, in which there is no slip. Such a hard switch leads to the paradox of the bed naturally wanting to refreeze as soon as sliding has commenced. A potential alternative structure is a region of subtemperate sliding. Here temperatures are marginally below the melting point and sliding velocities slower than they would if the bed was fully temperate. Rather than being controlled by a standard sliding law, sliding velocities are then constrained by the need to maintain energy balance. This thermal structure arises in temperature-dependent sliding laws in the limit of strong sensitivity to temperature. Here, we analyse the stability of such subtemperate regions, showing that they are subject to a set of instabilities that occur at all length scales between ice thickness and ice sheet length. The fate of these instabilities is to cause the formation of patches of frozen bed, raising the possibility of highly complicated cold-to-temperate transitions with spatial structures at short length scales that cannot be resolved in large-scale ice sheet simulation codes.


1967 ◽  
Vol 45 (2) ◽  
pp. 481-492 ◽  
Author(s):  
B. Escaig ◽  
G. Fontaine ◽  
J. Friedel

The possible role of stacking faults is discussed in some problems of glide and twinning of cubic metals, especially at low temperatures.The first part analyzes a model for the thermal variation of macroyield in b.c.c. metals. If one assumes that the dislocations of such metals split along either the (110) or the (112) planes, the screw dislocations will be sessile. The strong temperature variation of macroyield could be due to the thermally activated slip of such screws, previously developed at lower stresses during the less temperature-dependent microyield. Reasonably high stacking-fault energies are required for satisfactory numerical fits.The second part studies the influence of a dense dislocation network on the propagation of a stacking fault. The friction force acting on the partial that propagates the fault must be taken into account when deducing a stacking-fault energy from the stress at which stacking faults develop in a strongly work-hardened (f.c.c.) metal. The trails of dipoles left at each tree crossed should prevent any creation of point defects; they should lead, after the faults have propagated some length, to its multiplication into a twin or martensitic lamella. The analogies with problems of slip bauds and dipole formation in easy glide are stressed.


2004 ◽  
Vol 59 (5) ◽  
pp. 513-518 ◽  
Author(s):  
Rainer Kraft ◽  
Martin Valldor ◽  
Daniel Kurowski ◽  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen

Abstract The equiatomic rare earth-magnesium-indium compounds REMgIn (RE = Y, La-Nd, Sm, Gd- Tm, Lu) were prepared from the elements in sealed tantalum tubes inside a water-cooled sample chamber of an induction furnace. All compounds were characterized through their X-ray powder patterns. They crystallize with the hexagonal ZrNiAl type structure, space group P6̄̄2m, with three formula units per cell. The structure of SmMgIn was refined from X-ray single crystal diffractometer data: a = 761.3(2), c = 470.3(1) pm, wR2 = 0.0429, 380 F2 values and 14 variable parameters. The DyMgIn, HoMgIn, and TmMgIn structures have been analyzed using the Rietveld technique. The REMgIn structures contain two cystallographically independent indium sites, both with tri-capped trigonal prismatic coordination: In1Sm6Mg3 and In2Mg6Sm3. Together the magnesium and indium atoms form a three-dimensional [MgIn] network with Mg-Mg distances of 320 and Mg-In distances in the range 294 - 299 pm. Temperature dependent magnetic susceptibility data show Curie-Weiss behavior for DyMgIn, HoMgIn, and TmMgIn with experimental magnetic moments of 11.0(1) μB/Dy atom, 10.9(1) μB/Ho atom, and 7.5(1) μB/Tm atom. The three compounds order antiferromagnetically at TN = 22(2) K (DyMgIn), 12(1) K (HoMgIn), and 3(1) K (TmMgIn).


Inorganics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 14
Author(s):  
Patrick Herr ◽  
Oliver S. Wenger

Diisocyanide ligands with a m-terphenyl backbone provide access to Mo0 complexes exhibiting the same type of metal-to-ligand charge transfer (MLCT) luminescence as the well-known class of isoelectronic RuII polypyridines. The luminescence quantum yields and lifetimes of the homoleptic tris(diisocyanide) Mo0 complexes depend strongly on whether methyl- or tert-butyl substituents are placed in α-position to the isocyanide groups. The bulkier tert-butyl substituents lead to a molecular structure in which the three individual diisocyanides ligated to one Mo0 center are interlocked more strongly into one another than the ligands with the sterically less demanding methyl substituents. This rigidification limits the distortion of the complex in the emissive excited-state, causing a decrease of the nonradiative relaxation rate by one order of magnitude. Compared to RuII polypyridines, the molecular distortions in the luminescent 3MLCT state relative to the electronic ground state seem to be smaller in the Mo0 complexes, presumably due to delocalization of the MLCT-excited electron over greater portions of the ligands. Temperature-dependent studies indicate that thermally activated nonradiative relaxation via metal-centered excited states is more significant in these homoleptic Mo0 tris(diisocyanide) complexes than in [Ru(2,2′-bipyridine)3]2+.


2014 ◽  
Vol 225 ◽  
pp. 39-44
Author(s):  
Alexander Balitskii ◽  
Myhajlo Semerak ◽  
Walentyna Balitska ◽  
Andriy Subota ◽  
Oleh Wus

It is experimentally established that air-tested samples of degraded material showed tooth flow that disappears for tests in hydrogen. The main feature inherent in the studied materials are metastable and presence of more or less pronounced time-and temperature-dependent processes of structural relaxation, which reduces the total free energy of a thermodynamic system. The values of fracture toughness minimize the square deviation of experimentally obtained values drift from the theoretical curve corresponding to the exponential relaxation function.


Parasitology ◽  
1991 ◽  
Vol 102 (1) ◽  
pp. 105-112 ◽  
Author(s):  
P. A. Jansen ◽  
T. A. Bakke

SUMMARYThe relationship of survival and reproduction of Gyrodactylus salaris Malmberg on the Atlantic salmon (Salmo salar) to water temperature (2·5–19·0 °C), was studied on the basis of temporal sequence of births and age at death of individual parasites on isolated salmon, and of infrapopulation growth on isolated and grouped salmon. Mean life-span of the parasite was negatively correlated with water temperature: 33·7 days at 2·5 °C and 4·5 days at 19·0 °C. The average number of offspring per parasite peaked between 6·5 and 13·0 °C, and was approximately 2·4 at these two temperatures. Both the period between the successive births of the offspring (max 4) and the estimated generation time were negatively correlated with temperature. The innate capacity for increase (rm) was positively correlated with temperature: from 0·02 (/parasite/day) at 2·5 °C to 0·22 (/parasite/day) at 19·0 °C. Growth of the infrapopulations was positively correlated with water temperature and was higher on isolated fish than on grouped fish, though less than the potential parasite population growth estimated from rm. In the infrapopulations the mean intensity of parasites continued to increase throughout all the experiments on both isolated fish and on grouped fish.


Sign in / Sign up

Export Citation Format

Share Document