dermal thickness
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 4)

Pharmateca ◽  
2021 ◽  
Vol 14_2021 ◽  
pp. 70-73
Author(s):  
S.I. Surkichin Surkichin ◽  
L.S. Kholupova Kholupova ◽  

2021 ◽  
Vol 9 (2) ◽  
pp. e002553
Author(s):  
Rabab Hashem ◽  
Henrietta Mulnier ◽  
Haya Abu Ghazaleh ◽  
Susan Halson-Brown ◽  
Maria Duaso ◽  
...  

IntroductionLipohypertrophy is a common complication of exposure to insulin therapy. Despite the prevalence of lipohypertrophy and its potentially hazardous effects on glucose regulation, it remains a relatively understudied problem in diabetes. The objective of this study was to characterize lipohypertrophic tissue using ultrasound in adults with type 1 diabetes.Research design and methodsAn observational study of 74 people with type 1 diabetes from a diabetes center in South East London. Participants’ insulin exposed areas were scanned with ultrasound, with a high-frequency linear probe (6–13 MHz). The observed tissue changes were described, measured and graded according to nodule size and thickness of the dermal layer.ResultsParticipants mean age and diabetes duration were 40.6 (±14.2) and 18.3 (±10.9) years, respectively, and 60% (n=44) were male. A total of 740 lipohypertrophic nodules were observed, ranging from 1.8 mm to 40 mm in width. The mean (SD/range) number of nodules per participants was 10.4 (±6.2/1–29). Delineation between the dermal layers was disrupted in all current injection sites. In 52 participants (70%), there was a 30% increase in dermal thickness compared with local none injected tissue, and in 36 participants (48%) the increase was 50%. The level of thickness was >3 mm in the abdominal areas of 22 (40%) of these participants and in thighs of eight participants (17.8%). Hypoechogenic areas suggestive of necrotic tissue were observed within the lipohypertrophic nodules of 22 (30%) participants. Needle length and nodule depth were correlated (r=0.69, p<0.001). A conceptual model of the insulin exposed tissue changes observed was constructed.ConclusionsThe study confirms that insulin-exposed tissue changes are heterogenous and has provided conceptual and grading frameworks for classifying these changes. Further studies are required to establish the clinical implications of these classifications, in relation to glucose regulation and other clinical parameters.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2016
Author(s):  
Ignacio Ordiz ◽  
José A. Vega ◽  
Raquel Martín-Sanz ◽  
Olivia García-Suárez ◽  
Miguel E. del Valle ◽  
...  

Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule.


Author(s):  
Yuchen Zhang ◽  
Xiangdong Zhang ◽  
Xiaoxuan Jin ◽  
Pan Zhang ◽  
Kaiyang Liu ◽  
...  

Abstract Background Skin filler is an option for treatment of skin aging and wrinkle formation; however, currently used fillers are limited by poor biocompatibility, rapid degradation, and possible hypersensitivity reactions. However, autologous adipose tissue-derived products have been recognized as promising options for skin rejuvenation. Objectives This study aimed to develop a novel adipose-derived product for skin filling. Methods Adipose collagen fragment (ACF) was prepared through pulverization, filtration, and centrifugation. The macrography, structure, types of collagen, and cell viability of ACF were evaluated by immunostaining, Western blotting, and cell culture assays. ACF, nanofat and phosphate-buffered saline (9 spots/side, 0.01 ml/spot) were intradermally injected in the dorsal skin of 36 female BALB/c nude mice; then, the skin filling capacity and collagen remodeling process were investigated. Twenty-one female patients with fine rhytides in the infraorbital areas were enrolled and received ACF treatment as clinical applications. Therapeutic effects and patients’ satisfaction scores were recorded. Results The ACF yield from 50 ml of Coleman fat was 4.91 ± 0.25 ml. ACF contained nonviable cells and high levels of collagen I, collagen IV, and laminin. Fibroblasts and procollagen significantly increased in ACF and ACF-treated dermis (p &lt; 0.05). 85.7% of patients were satisfied with the therapy results, and no infections, injection site nodules, or other unwanted side effects were observed. Conclusions ACF significantly improved dermal thickness and collagen synthesis and may serve as a potential autologous skin filler.


2021 ◽  
Author(s):  
Renpeng Zhou ◽  
Chuang Yin ◽  
Weiwei Bian ◽  
Chen Wang

Abstract Our present study is aimed to evaluate the effects of adipose-derived extracts (AT-Ex) and GDNF within the extracts on skin graft. AT-Ex was harvest from fresh human lipoaspirates with centrifugation, emulsification and lysing by cycles of freeze and thawing. Concentrations of GDNF, VEGF and bFGF were detected by ELISA. AT-Ex and anti-GDNF-antibody-coupled AT-Ex were further used to test their ability to promote tube formation using human umbilical vein endothelial cells (HUVECs) and stimulate angiogenesis in nude skin-graft models. The results demonstrated that abundant GDNF, VEGF and bFGF were detected in AT-Ex, with GDNF displaying the highest concentration. AT-Ex significantly promoted the tube formation ability of HUVECs in vitro, with a dosage-dependent manner, while this ability was partially impaired when the anti-GDNF antibody was conjugated. In vivo, The AT-Ex treatment increased dermal thickness, augmented dermal proliferation and increased vascular density and GDNF contributed greatly to the AT-Ex effect in improvement the grafted skin condition by promoting angiogenesis in vivo. Our results suggested that critical effect of GDNF from AT-Ex on improvement skin graft condition.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1373 ◽  
Author(s):  
Alexe Grenier ◽  
Jean Legault ◽  
André Pichette ◽  
Lorry Jean ◽  
Audrey Bélanger ◽  
...  

Skin aging is the most visible element of the aging process, giving rise to a major concern for many people. Plants from the Ericaceae family generally have antioxidant and anti-inflammatory properties, making them potential anti-aging active ingredients. This study aimed to evaluate the safety and anti-aging efficacy of a Kalmia angustifolia extract using reconstructed skin substitutes. The safety evaluation was performed using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the efficacy was determined by assessing antioxidant and anti-inflammatory activity and analyzing skin substitutes reconstructed according to the self-assembly method by histology and immunofluorescence staining (elastin, collagen-1, collagen-3, aquaporin-3). The cell viability assay established the safety of the extract at a concentration up to 200 μg/mL. The Oxygen Radical Absorbance Capacity (ORAC) assay and a cell-based assay using 2’,7’-dichlorofluorescein-diacetate (DCFH-DA) revealed a strong antioxidant activity with an ORAC value of 16 µmol Trolox Equivalent/mg and a half-maximal inhibitory concentration (IC50) of 0.37 ± 0.02 μg/mL, while an interesting anti-inflammatory activity was found in the inhibition of NO production, with an inhibition percentage of NO production of 49 ± 2% at 80 µg/mL. The isolation and characterization of the extract allowed the identification of compounds that could be responsible for these biological activities, with two of them being identified for the first time in K. angustifolia: avicularin and epicatechin-(2β-O-7, 4β-6)-ent-epicatechin. Histological analyses of skin substitutes treated with the extract showed an increase in dermal thickness compared with the controls. K. angustifolia extract enhanced the expression of elastin and collagen-1, which are usually decreased with skin aging. These results suggest that K. angustifolia has promising antioxidant efficacy and anti-aging potential.


2021 ◽  
Vol 22 (16) ◽  
pp. 8926
Author(s):  
Monica L. Brown Lobbins ◽  
Imara-Safi O. Scott ◽  
Andrzej T. Slominski ◽  
Karen A. Hasty ◽  
Sicheng Zhang ◽  
...  

Systemic sclerosis (SSc; scleroderma) is a chronic fibrotic disease involving TGF-β1. Low serum vitamin D (vit D) correlates with the degree of fibrosis and expression of TGF-β1. This study was designed to determine whether the noncalcemic vit D analog, 17,20S(OH)2pD, suppresses fibrosis and mediators of the TGF-β1 pathway in the bleomycin (BLM) model of fibrosis. Fibrosis was induced into the skin of female C57BL/6 mice by repeated injections of BLM (50 μg/100 μL) subcutaneously. Mice received daily oral gavage with either vehicle (propylene glycol) or 17,20S(OH)2pD using 5, 15, or 30 μg/kg for 21 days. The injected skin was biopsied; analyzed histologically; examined for total collagen by Sircol; and examined for mRNA expression of MMP-13, BMP-7, MCP-1, Gli1, and Gli2 by TR-PCR. Spleen was analyzed for lymphocytes using flow cytometry. Serum was analyzed for cytokines using a multiplexed ELISA. Results showed that all three doses of 17,20S(OH)2pD suppressed net total collagen production, dermal thickness, and total collagen content in the BLM fibrosis model. 17,20S(OH)2pD also increased MMP-13 expression, decreased MCP-1 and Gli-2 expression in vivo, and suppressed serum levels of IL-13, TNF-α, IL-6, IL-10, IL-17, and IL-12p70. In summary, 17,20S(OH)2pD modulates the mediators of fibrosis in vivo and suppresses total collagen production and dermal thickness. This antifibrotic property of 17,20S(OH)2pD offers new therapeutic approaches for fibrotic disorders.


2021 ◽  
Vol 28 (3) ◽  
pp. 16-28
Author(s):  
I. N. Bondarenko

Background. A dynamic cross-layer visualisation of skin, its vascular structure in various anatomical facets during treatment in different age cohorts holds both scientific and practical value.Objectives. A semiotic study of skin, facial, neck and hand soft tissues using high-resolution ultrasound in women of different age cohorts.Methods. A total of 63 women aged between 22 and 59 years were enrolled. The study was designed with two comparison cohorts. The inclusion criteria were: women aged 22-59 years with no evident somatic or acute dermatological pathology not having aesthetic procedures for at least one month prior to the ultrasound examination of skin, facial, neck and hand soft tissues. The cohorts separated by age. Cohort 1 included 32 women aged 22-44 years (young), and cohort 2 — 31 women aged 45-59 years (middle-aged). High-resolution ultrasound (US) was performed in B-mode, colour Doppler and microV imaging.Results. A maximal dermal thickness was facial middle-third in both cohorts, averaging to 1.87 ± 0.35 mm in the young and 1.57 ± 0.23 — in middle-aged cohort (p <0.0001). A minimal dermal thickness in both cohorts was periorbital (1.16 ± 0.15 mm in the 22-44-year and 0.95 ± 0.12 — in 45-59-year cohort) and in dorsal hand surface (0.89 ± 0.13 and 0.9 ± 0.16 mm, respectively, p <0.0001). The dermal thickness in face and neck diminished with age due to a thinning papillary layer. An adequate dermal vascularisation rate was greater in the young cohort (p = 0.038).Conclusion. Ultrasound is effective in the diagnosis of skin, facial, neck and hand soft tissues at the planning and further control of safe injection and hardware aesthetic procedures, allowing a real-time thickness assessment of epidermis, dermis and its layers, vessels, subcutaneous fat and mimic muscles in norm and during complications.


Sign in / Sign up

Export Citation Format

Share Document