scholarly journals How do lizard niches conserve, diverge or converge? Further exploration of saurian evolutionary ecology

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nicolás Pelegrin ◽  
Kirk O. Winemiller ◽  
Laurie J. Vitt ◽  
Daniel B. Fitzgerald ◽  
Eric R. Pianka

Abstract Background Environmental conditions on Earth are repeated in non-random patterns that often coincide with species from different regions and time periods having consistent combinations of morphological, physiological and behavioral traits. Observation of repeated trait combinations among species confronting similar environmental conditions suggest that adaptive trait combinations are constrained by functional tradeoffs within or across niche dimensions. In an earlier study, we assembled a high-resolution database of functional traits for 134 lizard species to explore ecological diversification in relation to five fundamental niche dimensions. Here we expand and further examine multivariate relationships in that dataset to assess the relative influence of niche dimensions on the distribution of species in 6-dimensional niche space and how these may deviate from distributions generated from null models. We then analyzed a dataset with lower functional-trait resolution for 1023 lizard species that was compiled from our dataset and a published database, representing most of the extant families and environmental conditions occupied by lizards globally. Ordinations from multivariate analysis were compared with null models to assess how ecological and historical factors have resulted in the conservation, divergence or convergence of lizard niches. Results Lizard species clustered within a functional niche volume influenced mostly by functional traits associated with diet, activity, and habitat/substrate. Consistent patterns of trait combinations within and among niche dimensions yielded 24 functional groups that occupied a total niche space significantly smaller than plausible spaces projected by null models. Null model tests indicated that several functional groups are strongly constrained by phylogeny, such as nocturnality in the Gekkota and the secondarily acquired sit-and-wait foraging strategy in Iguania. Most of the widely distributed and species-rich families contained multiple functional groups thereby contributing to high incidence of niche convergence. Conclusions Comparison of empirical patterns with those generated by null models suggests that ecological filters promote limited sets of trait combinations, especially where similar conditions occur, reflecting both niche convergence and conservatism. Widespread patterns of niche convergence following ancestral niche diversification support the idea that lizard niches are defined by trait-function relationships and interactions with environment that are, to some degree, predictable and independent of phylogeny.

2008 ◽  
Vol 98 (6) ◽  
pp. 587-597 ◽  
Author(s):  
J.R. Bell ◽  
A. Mead ◽  
D.J. Skirvin ◽  
K.D. Sunderland ◽  
J.S. Fenlon ◽  
...  

AbstractAphid predators are a systematically disparate group of arthropods united on the basis that they consume aphids as part of their diet. In Europe, this group includes Araneae, Opiliones, Heteroptera, chrysopids, Forficulina, syrphid larvae, carabids, staphylinids, cantharids and coccinellids. This functional group has no phylogenetic meaning but was created by ecologists as a way of understanding predation, particularly for conservation biological control. We investigated whether trait-based approaches could bring some cohesion and structure to this predator group. A taxonomic hierarchy-based null model was created from taxonomic distances in which a simple multiplicative relationship described the Linnaean hierarchies (species, genera, etc.) of fifty common aphid predators. Using the same fifty species, a functional groups model was developed using ten behavioural traits (e.g. polyphagy, dispersal, activity, etc.) to describe the way in which aphids were predated in the field. The interrelationships between species were then expressed as dissimilarities within each model and separately analysed using PROXSCAL, a multidimensional scaling (MDS) program. When ordinated using PROXSCAL and then statistically compared using Procrustes analysis, we found that only 17% of information was shared between the two configurations. Polyphagy across kingdoms (i.e. predatory behaviour across animal, plant and fungi kingdoms) and the ability to withstand starvation over days, weeks and months were particularly divisive within the functional groups model. Confirmatory MDS indicated poor prediction of aphid predation rates by the configurations derived from either model. The counterintuitive conclusion was that the inclusion of functional traits, pertinent to the way in which predators fed on aphids, did not lead to a large improvement in the prediction of predation rate when compared to the standard taxonomic approach.


Paleobiology ◽  
2016 ◽  
Vol 42 (2) ◽  
pp. 185-208 ◽  
Author(s):  
Philip M. Novack-Gottshall

AbstractEvolutionary paleoecologists have proposed many explanations for Phanerozoic trends in ecospace utilization, including escalation, seafood through time, filling of an empty ecospace, and tiering, among others. These hypotheses can be generalized into four models of functional diversification within a life-habit ecospace framework (functional-trait space). The models also incorporate concepts in community assembly, functional diversity, evolutionary diversification, and morphological disparity. The redundancy model produces an ecospace composed of clusters of functionally similar taxa. The partitioning model produces an ecospace that is progressively subdivided by taxa along life-habit gradients. The expansion model produces an ecospace that becomes progressively enlarged by the accumulation of taxa with novel life habits. These models can be caused by a wide range of ecological and evolutionary processes, but they are all caused by particular “driven” mechanisms. A fourth, neutral model also exists, in which ecospace is filled at random by life habits: this model can serve as a passive null model. Each model produces distinct dynamics for functional diversity/disparity statistics when simulated by stochastic simulations of ecospace diversification. In this first of two companion articles, I summarize the theoretical bases of these models, describe their expected statistical dynamics, and discuss their relevance to important paleoecological trends and theories. Although most synoptic interpretations of Phanerozoic ecological history invoke one or more of the driven models, I argue that this conclusion is premature until tests are conducted that provide better statistical support for them over simpler passive models.


2016 ◽  
Vol 283 (1822) ◽  
pp. 20152013 ◽  
Author(s):  
Alex L. Pigot ◽  
Christopher H. Trisos ◽  
Joseph A. Tobias

Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Bian ◽  
Angela Pinilla ◽  
Tom Chandler ◽  
Richard Peters

AbstractHabitat-specific characteristics can affect signal transmission such that different habitats dictate the optimal signal. One way to examine how the environment influences signals is by comparing changes in signal effectiveness in different habitats. Examinations of signal effectiveness between different habitats has helped to explain signal divergence/convergence between populations and species using acoustic and colour signals. Although previous research has provided evidence for local adaptations and signal divergence in many species of lizards, comparative studies in movement-based signals are rare due to technical difficulties in quantifying movements in nature and ethical restrictions in translocating animals between habitats. We demonstrate herein that these issues can be addressed using 3D animations, and compared the relative performance of the displays of four Australian lizard species in the habitats of each species under varying environmental conditions. Our simulations show that habitats differentially affect signal performance, and an interaction between display and habitat structure. Interestingly, our results are consistent with the hypothesis that the signal adapted to the noisier environment does not show an advantage in signal effectiveness, but the noisy habitat was detrimental to the performance of all displays. Our study is one of the first studies for movement-based signals that directly compares signal performance in multiple habitats, and our approach has laid the foundation for future investigations in motion ecology that have been intractable to conventional research methods.


2021 ◽  
Vol 48 (10) ◽  
pp. 1849-1856
Author(s):  
D. E. Gavrilko ◽  
G. V. Shurganova ◽  
I. A. Kudrin ◽  
B. N. Yakimov

Information ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 135
Author(s):  
Maximilian Felde ◽  
Tom Hanika ◽  
Gerd Stumme

Null model generation for formal contexts is an important task in the realm of formal concept analysis. These random models are in particular useful for, but not limited to, comparing the performance of algorithms. Nonetheless, a thorough investigation of how to generate null models for formal contexts is absent. Thus we suggest a novel approach using Dirichlet distributions. We recollect and analyze the classical coin-toss model, recapitulate some of its shortcomings and examine its stochastic properties. Building upon this we propose a model which is capable of generating random formal contexts as well as null models for a given input context. Through an experimental evaluation we show that our approach is a significant improvement with respect to the variety of contexts generated. Furthermore, we demonstrate the applicability of our null models with respect to real world datasets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caishuang Huang ◽  
Yue Xu ◽  
Runguo Zang

Understanding how environmental change alters the composition of plant assemblages is a major challenge in the face of global climate change. Researches accounting for site-specific trait values within forest communities help bridge plant economics theory and functional biogeography to better evaluate and predict relationships between environment and ecosystem functioning. Here, by measuring six functional traits (specific leaf area, leaf dry matter content, leaf nitrogen, and phosphorus concentration, leaf nitrogen/phosphorus, wood density) for 292 woody plant species (48,680 individuals) from 250 established permanent forest dynamics plots in five locations across the subtropical evergreen broadleaved forests (SEBLF) in China, we quantified functional compositions of communities by calculating four trait moments, i.e., community-weighted mean, variance, skewness, and kurtosis. The geographical (latitudinal, longitudinal, and elevational) patterns of functional trait moments and their environmental drivers were examined. Results showed that functional trait moments shifted significantly along the geographical gradients, and trait moments varied in different ways across different gradients. Plants generally showed coordinated trait shifts toward more conservative growth strategies (lower specific leaf area, leaf N and P concentration while higher leaf nitrogen/phosphorus and wood density) along increasing latitude and longitude. However, trends opposite to the latitudinal and longitudinal patterns appeared in trait mean values along elevation. The three sets of environmental variables (climate, soil and topography) explained 35.0–69.0%, 21.0–56.0%, 14.0–31.0%, and 16.0–30.0% of the variations in mean, variance, skewness, and kurtosis across the six functional traits, respectively. Patterns of shifts in functional trait moments along geographical gradients in the subtropical region were mainly determined by the joint effects of climatic and edaphic conditions. Climate regimes, especially climate variability, were the strongest driving force, followed by soil nutrients, while topography played the least role. Moreover, the relationship of variance, skewness and kurtosis with climate and their geographical patterns suggested that rare phenotypes at edges of trait space were selected in harsher environments. Our study suggested that environmental filtering (especially climate variability) was the dominant process of functional assembly for forest communities in the subtropical region along geographical gradients.


2014 ◽  
Vol 328 ◽  
pp. 1-9 ◽  
Author(s):  
Matthew B. Russell ◽  
Christopher W. Woodall ◽  
Anthony W. D’Amato ◽  
Grant M. Domke ◽  
Sassan S. Saatchi

2021 ◽  
Author(s):  
Carlos Aguilar-Trigueros ◽  
Mark Fricker ◽  
Matthias Rillig

<p>Fungal mycelia consist of an interconnected network of filamentous hyphae and represent the dominant phase of the lifecycle in all major fungal phyla, from basal to more recent clades. Indeed, the ecological success of fungi on land is partly due to such filamentous network growth. Nevertheless, fungal ecologists rarely use network features as functional traits. Given the widespread occurrence of this body type, we hypothesized that interspecific variation in network features may reflect both phylogenetic affiliation and distinct ecological strategies among species. We show first that there is high interspecific variation in network parameters of fungi, which partly correlates with taxonomy; and second that network parameters, related to predicted-mycelial transport mechanisms during the exploration phase, reveal the trait space in mycelium architecture across species.  This space predicts a continuum of ecological strategies along two extremes: from highly connected mycelia with high resilience to damage but limited transport efficiency, to poorly connected mycelia with low resilience but high transport efficiency. We argue that mycelial networks are potentially a rich source of information to inform functional trait analysis in fungi, but we also note the challenges in establishing common principles and processing pipelines that are required to facilitate widespread use of network properties as functional traits in fungal ecology.</p>


Sign in / Sign up

Export Citation Format

Share Document