scholarly journals Pore Forming Protein Induced Biomembrane Reorganization and Dynamics: A Focused Review

2021 ◽  
Vol 8 ◽  
Author(s):  
Ilanila Ilangumaran Ponmalar ◽  
Nirod K. Sarangi ◽  
Jaydeep K. Basu ◽  
K. Ganapathy Ayappa

Pore forming proteins are a broad class of pathogenic proteins secreted by organisms as virulence factors due to their ability to form pores on the target cell membrane. Bacterial pore forming toxins (PFTs) belong to a subclass of pore forming proteins widely implicated in bacterial infections. Although the action of PFTs on target cells have been widely investigated, the underlying membrane response of lipids during membrane binding and pore formation has received less attention. With the advent of superresolution microscopy as well as the ability to carry out molecular dynamics (MD) simulations of the large protein membrane assemblies, novel microscopic insights on the pore forming mechanism have emerged over the last decade. In this review, we focus primarily on results collated in our laboratory which probe dynamic lipid reorganization induced in the plasma membrane during various stages of pore formation by two archetypal bacterial PFTs, cytolysin A (ClyA), an α-toxin and listeriolysin O (LLO), a β-toxin. The extent of lipid perturbation is dependent on both the secondary structure of the membrane inserted motifs of pore complex as well as the topological variations of the pore complex. Using confocal and superresolution stimulated emission depletion (STED) fluorescence correlation spectroscopy (FCS) and MD simulations, lipid diffusion, cholesterol reorganization and deviations from Brownian diffusion are correlated with the oligomeric state of the membrane bound protein as well as the underlying membrane composition. Deviations from free diffusion are typically observed at length scales below ∼130 nm to reveal the presence of local dynamical heterogeneities that emerge at the nanoscale—driven in part by preferential protein binding to cholesterol and domains present in the lipid membrane. Interrogating the lipid dynamics at the nanoscale allows us further differentiate between binding and pore formation of β- and α-PFTs to specific domains in the membrane. The molecular insights gained from the intricate coupling that occurs between proteins and membrane lipids and receptors during pore formation are expected to improve our understanding of the virulent action of PFTs.

2019 ◽  
Vol 116 (26) ◽  
pp. 12839-12844 ◽  
Author(s):  
Ilanila I. Ponmalar ◽  
Ramesh Cheerla ◽  
K. Ganapathy Ayappa ◽  
Jaydeep K. Basu

Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Marjetka Podobnik ◽  
Marta Marchioretto ◽  
Manuela Zanetti ◽  
Andrej Bavdek ◽  
Matic Kisovec ◽  
...  

Abstract Pore formation of cellular membranes is an ancient mechanism of bacterial pathogenesis that allows efficient damaging of target cells. Several mechanisms have been described, however, relatively little is known about the assembly and properties of pores. Listeriolysin O (LLO) is a pH-regulated cholesterol-dependent cytolysin from the intracellular pathogen Listeria monocytogenes, which forms transmembrane β-barrel pores. Here we report that the assembly of LLO pores is rapid and efficient irrespective of pH. While pore diameters at the membrane surface are comparable at either pH 5.5 or 7.4, the distribution of pore conductances is significantly pH-dependent. This is directed by the unique residue H311, which is also important for the conformational stability of the LLO monomer and the rate of pore formation. The functional pores exhibit variations in height profiles and can reconfigure significantly by merging to other full pores or arcs. Our results indicate significant plasticity of large β-barrel pores, controlled by environmental cues like pH.


2017 ◽  
Vol 372 (1726) ◽  
pp. 20160209 ◽  
Author(s):  
Marjetka Podobnik ◽  
Matic Kisovec ◽  
Gregor Anderluh

Aerolysin-like pore-forming proteins are an important family of proteins able to efficiently damage membranes of target cells by forming transmembrane pores. They are characterized by a unique domain organization and mechanism of action that involves extensive conformational rearrangements. Although structures of soluble forms of many different members of this family are well understood, the structures of pores and their mechanism of assembly have been described only recently. The pores are characterized by well-defined β-barrels, which are devoid of any vestibular regions commonly found in other protein pores. Many members of this family are bacterial toxins; therefore, structural details of their transmembrane pores, as well as the mechanism of pore formation, are an important base for future drug design. Stability of pores and other properties, such as specificity for some cell surface molecules, make this family of proteins a useful set of molecular tools for molecular recognition and sensing in cell biology. This article is part of the themed issue ‘Membrane pores: from structure and assembly, to medicine and technology’.


2021 ◽  
Author(s):  
Manoj Kumar Yadav ◽  
Santosh Kumar Tiwari

Abstract The interaction of antimicrobial peptides with membrane lipids plays a major role in numerous physiological processes. Bacteriocins are antimicrobial peptides known to kill target cells by pore formation and membrane disruption. In this study, polydiacetylene (PDA) vesicles were applied as artificial membrane for detection of plantaricin LD1 purified from Lactobacillus plantarum LD1. Plantaricin LD1 (200 µg/ml) was able to change the color of PDA vesicles from blue to red with colorimetric response CR % 30.26 ± 0.59. Nisin (200 µg/ml), used as control, also changed the color of the vesicles with CR % 50.56 ± 0.98 validating the membrane-acting nature of these bacteriocins. The PDA vesicles treated with nisin and plantaricin LD1 showed increased infrared absorbance at 1411.46 cm-1 and 1000-1150 cm-1 indicated the interaction of bacteriocins with phospholipids and fatty acids, respectively. Further, microscopic examination also suggested the disruption of bacteriocin-treated vesicles indicating the interaction of bacteriocins. These findings suggest that the PDA vesicles may be used as bio-mimetic sensor for the detection of bacteriocins produced by several probiotics in food and therapeutic applications.


2020 ◽  
Author(s):  
Ilanila Ilangumaran Ponmalar ◽  
K. G. Ayappa ◽  
J. K. Basu

ABSTRACTDeveloping alternate strategies against pore forming toxin (PFT) mediated bacterial virulence factors require an understanding of the target cellular response to combat rising antimicrobial resistance. Membrane-bound protein complexes involving PFTs, released by virulent bacteria are known to form pores leading to host cell lysis. However, membrane disruption and related lipid mediated active repair processes during attack by PFTs remain largely unexplored. We report counter intuitive and non-monotonic variations in lipid diffusion, measured using confocal fluorescence correlation spectroscopy, due to interplay of lipid ejection and crowding by membrane bound oligomers of a prototypical cholesterol dependent cytolysin, Listeriolysin O (LLO). The observed protein concentration dependent dynamical cross-over is correlated with transitions of LLO oligomeric state populations from rings to arc-like pore complexes, predicted using a proposed two-state free area based diffusion model. At low PFT concentrations, a hitherto unexplored regime of increased lipid diffusivity is attributed to lipid ejection events due to a preponderance of ring-like pore states. At higher protein concentrations where membrane inserted arc-like pores dominate, lipid ejection is less efficient and the ensuing crowding results in a lowering of lipid diffusion. These variations in lipid dynamics are corroborated by macroscopic rheological response measurements of PFT bound vesicles. Our study correlates PFT oligomeric state transitions, membrane remodelling and mechanical property variations, providing unique insights into developing strategies to combat virulent bacterial pathogens responsible for several infectious diseases.SIGNIFICANCEDeveloping alternate strategies against pore forming toxin (PFT) mediated bacterial virulence factors requires understanding target cellular responses and cellular defence strategies to combat rising antimicrobial resistant strains. While it is well understood that PFTs exist in a wide variety of oligomeric states, the underlying membrane response to these states is unexplored. Using confocal fluorescence correlation spectroscopy and a membrane free area based model we relate non-monotonic variations in the lipid diffusivity arising from an interplay of lipid ejection events and membrane crowding due to variations in concentration of membrane bound listeriolysin O. Our observations have a direct bearing on understanding cellular defense and repair mechanisms effective during initial stages of bacterial infection and intrinsically connected to the underlying membrane fluidity.


2014 ◽  
Vol 86 (4) ◽  
pp. 1949-1962 ◽  
Author(s):  
EDSON V.F. FAUTH ◽  
EDUARDO M. CILLI ◽  
RODRIGO LIGABUE-BRAUN ◽  
HUGO VERLI

Actinoporins are a family of pore-forming proteins with hemolytic activity. The structural basis for such activity appears to depend on their correct folding. Such folding encompasses a phosphocholine binding site, a tryptophan-rich region and the activity-related N-terminus segment. Additionally, different solution conditions are known to be able to influence the pore formation by actinoporins, as for Sticholysin II (StnII) and Equinatoxin II (EqtxII). In this context, the current work intends to characterize the influence of distinct solution conditions in the conformational behavior of these proteins through molecular dynamics (MD) simulations. The obtained data offer structural insights into actinoporins dynamics in solution, characterizing its conformational behavior at the atomic level, in accordance with previous experimental data on StnII and EqtxII hemolytic activities.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 304
Author(s):  
Ján Futas ◽  
Jan Oppelt ◽  
Pamela Anna Burger ◽  
Petr Horin

Cytotoxic T cells and natural killer cells can kill target cells based on their expression and release of perforin, granulysin, and granzymes. Genes encoding these molecules have been only poorly annotated in camelids. Based on bioinformatic analyses of genomic resources, sequences corresponding to perforin, granulysin, and granzymes were identified in genomes of camelids and related ungulate species, and annotation of the corresponding genes was performed. A phylogenetic tree was constructed to study evolutionary relationships between the species analyzed. Re-sequencing of all genes in a panel of 10 dromedaries and 10 domestic Bactrian camels allowed analyzing their individual genetic polymorphisms. The data showed that all extant Old World camelids possess functional genes for two pore-forming proteins (PRF1, GNLY) and six granzymes (GZMA, GZMB, GZMH, GZMK, GZMM, and GZMO). All these genes were represented as single copies in the genome except the GZMH gene exhibiting interspecific differences in the number of loci. High protein sequence similarities with other camelid and ungulate species were observed for GZMK and GZMM. The protein variability in dromedaries and Bactrian camels was rather low, except for GNLY and chymotrypsin-like granzymes (GZMB, GZMH).


2016 ◽  
Vol 44 (4) ◽  
pp. 1019-1025 ◽  
Author(s):  
Tim Rasmussen

Mechanosensitive (MS) channels provide protection against hypo-osmotic shock in bacteria whereas eukaryotic MS channels fulfil a multitude of important functions beside osmoregulation. Interactions with the membrane lipids are responsible for the sensing of mechanical force for most known MS channels. It emerged recently that not only prokaryotic, but also eukaryotic, MS channels are able to directly sense the tension in the membrane bilayer without any additional cofactor. If the membrane is solely viewed as a continuous medium with specific anisotropic physical properties, the sensitivity towards tension changes can be explained as result of the hydrophobic coupling between membrane and transmembrane (TM) regions of the channel. The increased cross-sectional area of the MS channel in the active conformation and elastic deformations of the membrane close to the channel have been described as important factors. However, recent studies suggest that molecular interactions of lipids with the channels could play an important role in mechanosensation. Pockets in between TM helices were identified in the MS channel of small conductance (MscS) and YnaI that are filled with lipids. Less lipids are present in the open state of MscS than the closed according to MD simulations. Thus it was suggested that exclusion of lipid fatty acyl chains from these pockets, as a consequence of increased tension, would trigger gating. Similarly, in the eukaryotic MS channel TRAAK it was found that a lipid chain blocks the conducting path in the closed state. The role of these specific lipid interactions in mechanosensation are highlighted in this review.


2018 ◽  
Vol 207 ◽  
pp. 409-421 ◽  
Author(s):  
Hirak Chakraborty ◽  
Md. Jafurulla ◽  
Andrew H. A. Clayton ◽  
Amitabha Chattopadhyay

Photobleaching image correlation spectroscopy (pbICS) reveals that membrane cholesterol modulates the oligomeric state of the serotonin1A receptor.


Sign in / Sign up

Export Citation Format

Share Document