signal transduction inhibitors
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259241
Author(s):  
Ethan Emberley ◽  
Alison Pan ◽  
Jason Chen ◽  
Rosalyn Dang ◽  
Matt Gross ◽  
...  

Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine into the TCA cycle. We found that RCC cells are highly dependent on glutamine for proliferation, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption, which was concomitant with a decrease in the production of glutamate and other glutamine-derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL inhibitor) in combination with telaglenastat resulted in decreased consumption of both glucose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced tumor growth compared to either agent alone. Enhanced anti-tumor activity was also observed with the combination of everolimus plus telaglenastat. Collectively, our results demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose and glutamine consumption.


2021 ◽  
pp. 106002802110361
Author(s):  
Clement Chung

Objective: To discuss the recent and emerging data for novel targeted therapies in myelodysplastic syndromes (MDS). Data Sources: A literature search from January 2015 to June 2021 was performed using the key terms targeted therapies, myelodysplastic syndromes, DNA repair, erythroid differentiation therapy, epigenetic inhibitors, signal transduction inhibitors, and apoptosis-inducing agents. Study Selection and Data Extraction: Relevant clinical trials and articles in the English language were identified and reviewed. Data Synthesis: MDS are a heterogeneous group of malignant blood disorders affecting the bone marrow (BM), ultimately leading to BM failure, acute leukemia, and death. Selection of treatment is influenced by the severity of symptoms, cytopenia, cytogenetics, prognostic category, medical fitness, and patient preferences. Although current therapies such as erythropoiesis stimulating agents (ESAs) and hypomethylating agents (HMAs) help improve anemia and reduce transfusion burden, limited treatment options exist when patients experience treatment failure to ESAs or HMA. Recent regulatory approval of luspatercept, which targets the erythroid differentiation pathway, represents a major therapeutic advance in the management of anemia in MDS patients who are refractory to ESAs. Many investigational targeted therapies that aim at the myeloid lineage signaling pathway and the immune microenvironment are in active development. Relevance to Patient Care and Clinical Practice: This nonexhaustive review summarizes and describes the recent data for targeted therapies for MDS. Conclusion: The development of novel and investigational therapeutic agents continues to contribute to an improved understanding of tumor biology. The precise therapeutic role and timing of these agents remain to be elucidated.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 816
Author(s):  
Stephen L. Abrams ◽  
Shaw M. Akula ◽  
Akshaya K. Meher ◽  
Linda S. Steelman ◽  
Agnieszka Gizak ◽  
...  

Glycogen synthase kinase-3 (GSK-3) is a regulator of signaling pathways. KRas is frequently mutated in pancreatic cancers. The growth of certain pancreatic cancers is KRas-dependent and can be suppressed by GSK-3 inhibitors, documenting a link between KRas and GSK-3. To further elucidate the roles of GSK-3β in drug-resistance, we transfected KRas-dependent MIA-PaCa-2 pancreatic cells with wild-type (WT) and kinase-dead (KD) forms of GSK-3β. Transfection of MIA-PaCa-2 cells with WT-GSK-3β increased their resistance to various chemotherapeutic drugs and certain small molecule inhibitors. Transfection of cells with KD-GSK-3β often increased therapeutic sensitivity. An exception was observed with cells transfected with WT-GSK-3β and sensitivity to the BCL2/BCLXL ABT737 inhibitor. WT-GSK-3β reduced glycolytic capacity of the cells but did not affect the basal glycolysis and mitochondrial respiration. KD-GSK-3β decreased both basal glycolysis and glycolytic capacity and reduced mitochondrial respiration in MIA-PaCa-2 cells. As a comparison, the effects of GSK-3 on MCF-7 breast cancer cells, which have mutant PIK3CA, were examined. KD-GSK-3β increased the resistance of MCF-7 cells to chemotherapeutic drugs and certain signal transduction inhibitors. Thus, altering the levels of GSK-3β can have dramatic effects on sensitivity to drugs and signal transduction inhibitors which may be influenced by the background of the tumor.


2021 ◽  
Vol 27 (2) ◽  
pp. 184-191
Author(s):  
Alexandra Höpfinger ◽  
Thomas Karrasch ◽  
Andreas Schäffler ◽  
Andreas Schmid

Recent data argue for a pro-inflammatory role of CAMP (cathelicidin antimicrobial peptide) in adipocytes and adipose tissue (AT) and for regulatory circuits involving TLRs. In order to investigate regulatory effects of TLR2 and TLR4, 3T3-L1 adipocytes were stimulated with TLR2 agonistic lipopeptide MALP-2 and with TLR4 agonist LPS in presence or absence of signal transduction inhibitors. CAMP gene expression was analysed by quantitative real-time PCR in adipocytes and in murine AT compartments and cellular subfractions. CAMP expression was higher in gonadal than in subcutaneous AT and there was a gender-specific effect with higher levels in males. Adipocytes had higher CAMP expression than the stroma-vascular cell (SVC) fraction. MALP-2 up-regulated CAMP expression significantly, mediated by STAT3 and PI3K and potentially (non-significant trend) by NF-κB and MAPK, but not by raf-activated MEK-1/-2. Moreover, LPS proved to act as a potent inducer of CAMP via NF-κB, PI3K and STAT3, whereas specific inhibition of MAPK and MEK-1/-2 had no effect. In conclusion, activation of TLR2 and TLR4 by classical ligands up-regulates adipocyte CAMP expression involving classical signal transduction elements. These might represent future drug targets for pharmacological modulation of CAMP expression in adipocytes, especially in the context of metabolic and infectious diseases.


2019 ◽  
Vol 72 ◽  
pp. 22-40 ◽  
Author(s):  
Saverio Candido ◽  
Stephen L. Abrams ◽  
Linda S. Steelman ◽  
Kvin Lertpiriyapong ◽  
Alberto M. Martelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document