endocrine disruptor chemicals
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 27 (9-10) ◽  
pp. 2359-2374
Author(s):  
Seref Tan ◽  
Ali Derya Atik ◽  
Begum Yurdakok-Dikmen ◽  
Ayhan Filazi ◽  
Kadriye Yurdakok ◽  
...  

Author(s):  
Osama Asanousi Lamma

Sewage effluent water is consistently used for the agricultural irrigation in rural and urban region farms. The spread of the potential infectious diseases is the major concern for farm workers and also for city inhabitant when they get exposed to these effluents. They also will affect those people consuming crops developed using effluent water irrigation system, particularly when the farm produce is consumed raw by people or otherwise, the farm yield is brought in that raw condition into the kitchen. Only way of preventing is by making adequate measures to disinfect the effluent. Moreover, the effluent water must meet all the conditions of usual irrigation water parameter needs such as trace elements, sodium adsorption ratio, salt content, and so on. Regrettably, no proper interest taken and awareness paid to curtail sewage irrigation long-term effects on principal groundwater. The irrigation water is mostly applied during the dry climatic conditions that evaporates quickly. Whereas, the non-biodegradable chemical concentration of the drained water and deep-percolated water goes down to join the groundwater, which may remain at a higher level than the effluent water itself. There are various chemicals included in such effluent water, comprising of various salts, potential pesticide residues, nitrates, and they are usually expected in the farming and irrigated farming. However, the chemicals in the sewage, such as pharmaceuticals, organic, synthetic compounds, by-products of disinfection, and pharmaceutical active endocrine disruptor, chemicals, Fumic acids are mainly known to be the main disinfection precursor by-products. They are formed as soon as the drainage water joins the drinking-water, which gets chlorinated subsequently. Therefore, the groundwater right under the sewage-irrigated regions finally can become completely unfit for human consumption and drinking. The is the main issue that is raising questions of its accountability and burden, when the sewage


2021 ◽  
Author(s):  
Zohar Barnett-Itzhaki ◽  
Sarah Knapp ◽  
Chaya Avraham ◽  
Catherine Racowsky ◽  
Russ Hauser ◽  
...  

Abstract STUDY QUESTION Are phthalate metabolite concentrations in follicular fluid (FF) associated with the expression of extracellular vesicle microRNAs (EV-miRNAs)? SUMMARY ANSWER Phthalate metabolite concentrations are associated with the expression of EV-miRNA and their associated pathways in FFs. WHAT IS KNOWN ALREADY Phthalate metabolites were recently detected in FF. Urinary phthalate metabolite concentrations alter the expression of EV-miRNAs in FF. STUDY DESIGN, SIZE, DURATION Prospective study including 105 women recruited between January 2014 and August 2016 in a tertiary university-affiliated hospital. PARTICIPANTS/MATERIALS, SETTING, METHODS We assessed FF concentrations of 12 phthalate metabolites. EV-miRNAs were isolated from aliquots of the same FF, and their expression profiles were measured using a human miRNA panel. Associations between EV-miRNAs that were present in >50% of the samples and phthalate metabolites that were measured in >74% of the FF samples were tested. Genes regulated by EV-miRNAs that were found to be significantly (false discovery rate q-value < 0.1) correlated with FF-phthalates were analyzed for pathways linked with female fertility using miRWalk2.0 Targetscan database, DAVID Bioinformatics Resources and Kyoto Encyclopedia of Genes and Genomes (KEGG). MAIN RESULTS AND THE ROLE OF CHANCE Of 12 phthalate metabolites, 11 were measured in at least one FF sample. Mono (6-COOH-2-methylheptyl) phthalate (MCOMHP), mono-2-ethyl-5-carboxypentyl phthalate (mECPP), mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP) and mono (7-COOH-2-methyloctyl) phthalate (MCOMOP) were detected in more than 74% of the samples. Of 754 EV-miRNAs tested, 39 were significantly associated either with MEP, MBzP, MCOMOP, MCOMHP and/or with mECPP, after adjusting for multiple testing (P < 0.05). KEGG-based pathway enrichment analysis of the genes regulated by these miRNAs showed that these EV-miRNAs may be involved in pathways related to ovary or oocyte development, maturation and fertilization. LIMITATIONS, REASONS FOR CAUTION The use of miRNA panel array limits the number of potential relevant miRNAs. Moreover, several of the phthalate metabolites examined may be biased due to internal (enzymatic activity) or external (contamination in medical interventions) causes. WIDER IMPLICATIONS OF THE FINDINGS Phthalate metabolites may alter follicular EV-miRNAs profile and thus impair pathways that are involved with oocyte development, maturation and fertilization. Our results contribute to understanding of possible mechanism(s) in which endocrine disruptor chemicals interfere with female fertility. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Institutes of Environmental Health Sciences [Grant R21-ES024236]; and Environmental Health Fund, Israel [Grant 1301], no competing interests. TRIAL REGISTRATION NUMBER N/A.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1003
Author(s):  
Mariana Di Lorenzo ◽  
Aldo Mileo ◽  
Vincenza Laforgia ◽  
Maria De Falco ◽  
Luigi Rosati

Background: Nonylphenol (NP) and Octylphenol (OP) are persistent and non-biodegradable environmental contaminants classified as endocrine disruptor chemicals (EDCs). These compounds are widely used in several industrial applications and present estrogen-like properties, which have extensively been studied in aquatic organisms. The present study aimed to verify the interference of these compounds alone, and in mixture, on the reproductive cycle of the male terrestrial vertebrate Podarcis siculus, focusing mainly on the steroidogenesis process. Methods: Male lizards have been treated with different injections of both NP and OP alone and in mixture, and evaluation has been carried out using a histological approach. Results: Results obtained showed that both substances are able to alter both testis histology and localization of key steroidogenic enzymes, such as 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β- hydroxysteroid dehydrogenase (17β-HSD) and P450 aromatase. Moreover, OP exerts a preponderant effect, and the P450 aromatase represents the major target of both chemicals. Conclusions: In conclusion, NP and OP inhibit steroidogenesis, which in turn may reduce the reproductive capacity of the specimens.


2020 ◽  
Vol 10 (11) ◽  
pp. 4017
Author(s):  
Alfonso Menchén ◽  
Yolanda Espín ◽  
Nicolás Valiente ◽  
Beatriz Toledo ◽  
Manuel Álvarez-Ortí ◽  
...  

Saline lakes are subject to numerous environmental impacts related to human activities, changing the chemical and biological natural conditions of the ecosystem. Sustainable development depends on the conservation of such delicate saline ecosystems, which may hold distinctive biodiversity. Pollution is one of the major threats to surface water bodies, for example by increasing nutrient contents and organic pollutants, including endocrine disrupting chemicals. Microbially mediated redox processes exert a fundamental control on nutrient turnover and contaminant removal. This study examines the influence of land use on the distribution of endocrine disrupting chemicals as well as on the microbial community composition in lacustrine sediments from Pétrola saline Lake (SE Spain). The lake is impacted by anthropogenic activities (agriculture, farming, mining and urban wastewater spills). Applying chemical and molecular tools (sequencing of 16S rRNA gene) showed a clear influence of land use on the chemistry and bacterial abundance of the lake sediments. The sampling points closer to wastewater outflows and mining ponds (2635, 2643 and 2650) showed fewer numbers and types of endocrine disrupting chemicals as well as a smaller number of families in the microbial community. These findings improve our understanding of how land use affects both water chemistry and the abundance of organisms responsible for biogeochemical cycles.


2020 ◽  
Vol 9 (6) ◽  
pp. R134-R142 ◽  
Author(s):  
Rosalie Cabry ◽  
Philippe Merviel ◽  
Aicha Madkour ◽  
Elodie Lefranc ◽  
Florence Scheffler ◽  
...  

The negative impact of endocrine-disrupting pesticides on human fertility is now a key issue in reproductive health. There are much fewer literature data about the impact of pesticide exposure on women than on men and very few studies of women participating in an in vitro fertilization (IVF) programme. In the present review, we found that (1) various pesticides with an endocrine-disrupting action are associated with poor oocyte maturation and competency, embryonic defects and poor IVF outcomes, and (2) some pesticide compounds are linked to specific causes of female infertility, such as premature ovarian insufficiency, polycystic ovarian syndrome, and endometriosis. IVF participants living in agricultural regions should be informed about the fertility decline, low ongoing pregnancy rates, and elevated risk of miscarriage associated with exposure to high doses of pesticides.


Sign in / Sign up

Export Citation Format

Share Document