scholarly journals Groundwater Problems Caused By Irrigation with Sewage Effluent

Author(s):  
Osama Asanousi Lamma

Sewage effluent water is consistently used for the agricultural irrigation in rural and urban region farms. The spread of the potential infectious diseases is the major concern for farm workers and also for city inhabitant when they get exposed to these effluents. They also will affect those people consuming crops developed using effluent water irrigation system, particularly when the farm produce is consumed raw by people or otherwise, the farm yield is brought in that raw condition into the kitchen. Only way of preventing is by making adequate measures to disinfect the effluent. Moreover, the effluent water must meet all the conditions of usual irrigation water parameter needs such as trace elements, sodium adsorption ratio, salt content, and so on. Regrettably, no proper interest taken and awareness paid to curtail sewage irrigation long-term effects on principal groundwater. The irrigation water is mostly applied during the dry climatic conditions that evaporates quickly. Whereas, the non-biodegradable chemical concentration of the drained water and deep-percolated water goes down to join the groundwater, which may remain at a higher level than the effluent water itself. There are various chemicals included in such effluent water, comprising of various salts, potential pesticide residues, nitrates, and they are usually expected in the farming and irrigated farming. However, the chemicals in the sewage, such as pharmaceuticals, organic, synthetic compounds, by-products of disinfection, and pharmaceutical active endocrine disruptor, chemicals, Fumic acids are mainly known to be the main disinfection precursor by-products. They are formed as soon as the drainage water joins the drinking-water, which gets chlorinated subsequently. Therefore, the groundwater right under the sewage-irrigated regions finally can become completely unfit for human consumption and drinking. The is the main issue that is raising questions of its accountability and burden, when the sewage

2020 ◽  
Vol 0 (2) ◽  
pp. 21-25
Author(s):  
Nikolay Dubenok ◽  
Andrey Novikov ◽  
Sergei Borodychev ◽  
Maria Lamskova

At the stage of water treatment for irrigation systems, the efficiency capture coarse and fine mechanical impurities, as well as oil products and organic compounds affects the reliability of the equipment of the irrigation network and the safety of energy exchange processes in irrigated agricultural landscapes. The violation of work irrigation system can cause disruptions in irrigation schedules of agricultural crops, crop shortages, degradation phenomena on the soil and ecological tension. For the combined irrigation system, a water treatment unit has been developed, representing a hydrocyclone apparatus with a pipe filter in the case. For the capacity of 250 m3/h the main geometrical dimensions of hydrocyclone have been calculated. To organize the capture petroleum products and organic compounds, it has been proposed a modernization of a hydrocyclone unit, consisting in dividing the cylindrical part of the apparatus into two section. The first is section is for input irrigation water, the second one is for additional drainage of clarified irrigation water after sorption purification by the filter, placed on the disk and installed coaxially with the drain pipe and the pipe filter.


2021 ◽  
Vol 9 (1) ◽  
pp. 100
Author(s):  
Alba C. Mayta-Apaza ◽  
Israel García-Cano ◽  
Konrad Dabrowski ◽  
Rafael Jiménez-Flores

The disposal of acid whey (Aw), a by-product from fermented products, is a problem for the dairy industry. The fishery industry faces a similar dilemma, disposing of nearly 50% of fish processed for human consumption. Economically feasible and science-based alternatives are needed to overcome this problem. One possible solution is to add value to the remaining nutrients from these by-products. This study focuses on the breakdown of nutrients in controlled fermentations of Aw, fish waste (F), molasses (M), and a lactic acid bacteria (LAB) strain (Lr). The aim was to assess the dynamic variations in microbial diversity and the biochemical changes that occur during fermentation. Four treatments were compared (AwF, AwFM, AwFLr, and AwFMLr), and the fermentation lasted 14 days at 22.5 °C. Samples were taken every other day. Colorimetric tests for peptide concentrations, pH, and microbial ecology by 16S-v4 rRNA amplicon using Illumina MiSeq were conducted. The results of the microbial ecology showed elevated levels of alpha and beta diversity in the samples at day zero. By day 2 of fermentation, pH dropped, and the availability of a different set of nutrients was reflected in the microbial diversity. The fermentation started to stabilize and was driven by the Firmicutes phylum, which dominated the microbial community by day 14. Moreover, there was a significant increase (3.6 times) in peptides when comparing day 0 with day 14, making this treatment practical and feasible for protein hydrolysis. This study valorizes two nutrient-dense by-products and provides an alternative to the current handling of these materials.


2015 ◽  
Vol 72 (4) ◽  
pp. 579-584 ◽  
Author(s):  
A. Muramatsu ◽  
H. Ito ◽  
A. Sasaki ◽  
A. Kajihara ◽  
T. Watanabe

To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.


2018 ◽  
Vol 1 (2) ◽  
pp. 125-144
Author(s):  
Wayan Windia

Basically subak is a farmer-managed irrigation system in Bali. It is an entity managing some sites of rice field, getting irrigation water from one source, having subak temple, and getting an autonomy of internally and externally. It also has some natural bounderies. Subak as a socio-cultural institution has some strengths. But subak is very weak because of external intervention. The globalization (competition, pragmatism, materialism, etc) highly influences the subak existence. Now, irrigation water for subak is taken by tourism sector as water drinking industry and by the domestic used. Therefore water for subak is limited. Also, the land tax (pajak bumi dan bangunan) is very high, because the number of tax is based on rice fileld location. That is why land conversion in Bali is very high, about 750 ha/year. The problems and threats of subak in Bali are coming from tourism sector, green revolution concept, free trade, and biotechnology development. To increase the defensiveness and sustainability of subak needs a strategic policy in relation with parhyangan (values) aspects, pawongan (social) aspects, and palemahan (physical) aspects.


2021 ◽  
Vol 5 (1) ◽  
pp. 223-232
Author(s):  
Mohammed Jr. Kinta ◽  
A. V. Ayanwale ◽  
U. N. Keke ◽  
Y. I. Auta ◽  
B. S. Adama ◽  
...  

Developing countries like Nigeria are faced with increased in generation of domestic, industrial and agricultural wastes, with a large percentage moving. This study evaluates the physico-chemical and some heavy metals concentration in three common species of fish from Tungan Kawo reservoir Kontagora, Nigeria; using standard methods between (July 2018 – February 2019); at four different sampling stations of human activities on the water. Five heavy metals were evaluated (Lead, Copper, Manganese, Iron and Chromium) in the fish samples. Phosphate (0.4 – 2.5) mg/L, Nitrate (3.2 – 7.5) mg/L, Temperature (27 – 32.4) 0C, Dissolved Oxygen (2.4 – 5.2 mg/L), Conductivity (81 – 125 µS/cm), Biochemical Oxygen Demand (1.9 – 4.4 mg/L), Alkalinity (mg/L) and Total Dissolved Solids (117 – 198) ppm were within the standard for drinking water and survival of fish.  However, the pH (6.3 – 9.8) was above the standard for NIS and WHO drinking water but can support aquatic life. Iron (0.64 ± 0.072 mg/kg) was the most highly concentrated in Synodontis clarias while lead (0.01 ± 0.013 mg/kg) was the lowest in Oreochromis niloticus and Coptidon zillii (formerly Tilapia zillii. This current finding indicates that the water is safe for both aquatic life and domestic purpose but not suitable for direct human consumption without being properly treated. However, there is the need for regular monitoring of the heavy metals load in this water body and the aquatic organisms because of the long term effects


2005 ◽  
Vol 51 (3-4) ◽  
pp. 151-157 ◽  
Author(s):  
Y.W. Feng ◽  
I. Yoshinaga ◽  
E. Shiratani ◽  
T. Hitomi ◽  
H. Hasebe

We studied nutrient balance in a paddy field that had a recycling irrigation system and evaluated the effect of the irrigation system on nutrient balance during the irrigation period, from April to August 2002. Chemical fertilizer was the main input of phosphorus; the soil absorbed about 56% of it. The amount of nitrogen supplied by the irrigation system was higher than in a representative paddy field, and the amount of nitrogen fertilizer used was decreased because the irrigation water was partly reused. About 20% of applied nitrogen was lost by denitrification. The net outflows of phosphorus and nitrogen were −0.37 and −3.98 kg ha−1, respectively. These results indicate that our study paddy field performed well in removing phosphorus and nitrogen compounds from runoff water. A recycling irrigation system can be considered an effective way of reducing the amounts of water and fertilizer used and reducing the outflow nutrients.


2021 ◽  
Vol 63 (6) ◽  
pp. 50-56
Author(s):  
Thi Thu Hien Bui ◽  
◽  
Thanh Binh Nguyen ◽  
Thi Diem Pham ◽  
Thi Minh Nguyet Bui ◽  
...  

The processing of pangasius fish has produced a number of by-products with economic and biological value such as heads, bones, and fins, but these products have not been fully utilised. The hydrolysed protein powder from pangasius by-products has a high nutritional content, attractive taste and mainly used as the raw material in the production of some value-added food products. The purpose of this study was to develop a formula to create seasoning products from protein powder hydrolysed pangasius by-products. The main ingredients such as pangasius protein powder, starch, basic spices (salt, sugar, onion powder, ginger, pepper, etc.) were studied and selected in the recipe for seasoning powder. In which, the research process to determine the ratio of the main ingredients was done with 25-45% protein powder from pangasius by-products combined with 20-35% modified starch; 16-24% salt; 5-20% sugar; 0.5-2% spice mixture of onion powder, ginger powder, pepper powder. Product quality was assessed through sensory criteria, protein content, carbohydrates, etc. Research results had built a formula for producing nutritional seasoning products from protein powder hydrolysed pangasius by-products with protein content 18-22%, carbohydrates 30-33%, salt content 18-20%, moisture content ≤10%, and food safety criteria meet the requirements according to current regulations.


Sign in / Sign up

Export Citation Format

Share Document