scholarly journals Safety Assessment of Ancient Buildings under Adjacent Subway Blasting Construction Based on the Optimized Fuzzy Optimal Method

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bo Wu ◽  
Pingting Liu ◽  
Wei Huang ◽  
Guowang Meng

Fragile ancient buildings are recognized as an eloquent testimony to human civilization, and their safety should arouse more attention. According to the special case of adjacent blasting construction, the assessment model should be essentially built to assess the effect of tunnel blasting on the safety of the ancient buildings. To analyze the structural safety of ancient buildings under blasting vibration and to protect the precious ancient buildings, a risk assessment model of ancient buildings with 20 relevant assessment indexes was initiatively built in this study. To be specific, the relative factors of blasting, the factors of ancient buildings, and other factors (e.g., religion) were comprehensively considered in the model. Subsequently, the risk level and weight were calculated more systematically and quantitatively by adopting the optimized optimal comprehensive method integrating the G1 method and the entropy method. Lastly, the overall risk value was determined by applying the fuzzy gray method. Afterward, the value was adopted to assess the safety of the Asoka Temple, the only existing temple named after the Indian King Asoka in China, as an attempt to verify the feasibility of this model. Besides, the Asoka tunnel was around it. As demonstrated from the results, the age of the buildings maximally impacted the safety of ancient buildings, and the safety level of the Asoka Temple was “relatively safe.” The present study built an effective model to assess the safety of ancient buildings under adjacent subway blasting construction, which could help improve the efficiency and accuracy of assessments.

2014 ◽  
Vol 1065-1069 ◽  
pp. 383-387
Author(s):  
Jian Tian ◽  
Peng Guo ◽  
Zhi Qiang Li

The drilling and blasting method is popular for the construction of highway tunnel,which is easy to cause serious production safety accidents.Based on safety risk analysis of tunnel blasting construction,safety risk probability assessment index system of tunnel blasting construction was put forward,which consist of establishment of blasting scheme,belection of blasting equipment,and safety management,etc.Safety risk probability assessment model was constructed based on the fuzzy comprehensive evaluation,which are divided in five level.The risk matrix method was used to assess risk level of blasting construction,considering blasting construction risk probability and the consequence.Through the case on ChenJiagou tunnel in the province of Hebei proves the feasibility of evaluation method,and the corresponding risk control measurements were proposed.


2021 ◽  
Vol 13 (12) ◽  
pp. 6917
Author(s):  
Binghong Pan ◽  
Shasha Luo ◽  
Jinfeng Ying ◽  
Yang Shao ◽  
Shangru Liu ◽  
...  

As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced left-turn lane length of CFI. And the results of existing research studies are not operational, making it difficult to put CFI into application. To address this issue, this paper presents a methodological procedure for determination and evaluation of displaced left-turn lane length based on the entropy method considering multiple performance measures for sustainable transportation, including traffic efficiency index, environment effect index and fuel consumption. VISSIM and the surrogate safety assessment model (SSAM) were used to simulate the operational and safety performance of CFI. The multi-attribute decision-making method (MADM) based on an entropy method was adopted to determine the suitability of the CFI schemes under different traffic demand patterns. Finally, the procedure was applied to a typical congested intersection of the arterial road with heavy traffic volume and high left-turn ratio in Xi’an, China, the results showed the methodological procedure is reasonable and practical. According to the results, for the studied intersection, when the Volume-to-Capacity ratio (V/C) in the westbound and eastbound lanes is less than 0.5, the length of the displaced left-turn lanes can be selected in the range of 80 to 170 m. Otherwise, other solutions should be considered to improve the traffic efficiency. The simulation results of the case showed CFI can significantly improve the traffic efficiency. In the best case, compared with the conventional intersection, the number of vehicles increases by 13%, delay, travel time, number of stops, CO emission, and fuel consumption decrease by 41%, 29%, 25%, 17%, and 17%, respectively.


Author(s):  
Lian Chen ◽  
Shenglu Zhou ◽  
Qiong Yang ◽  
Qingrong Li ◽  
Dongxu Xing ◽  
...  

This study detailed a complete research from Lead (Pb) content level to ecological and health risk to direct- and primary-sources apportionment arising from wheat and rice grains, in the Lihe River Watershed of the Taihu region, East China. Ecological and health risk assessment were based on the pollution index and US Environmental Protection Agency (EPA) health risk assessment model. A three-stage quantitative analysis program based on Pb isotope analysis to determine the relative contributions of primary sources involving (1) direct-source apportionment in grains with a two-end-member model, (2) apportionment of soil and dustfall sources using the IsoSource model, and (3) the integration of results of (1) and (2) was notedly first proposed. The results indicated that mean contents of Pb in wheat and rice grains were 0.54 and 0.45 mg/kg and both the bio-concentration factors (BCF) were <<1; the ecological risk pollution indices were 1.35 for wheat grains and 1.11 for rice grains; hazard quotient (HQ) values for adult and child indicating health risks through ingestion of grains were all <1; Coal-fired industrial sources account for up to 60% of Pb in the grains. This study provides insights into the management of grain Pb pollution and a new method for its source apportionment.


2021 ◽  
pp. 69-79
Author(s):  
V. V. GRITSAN ◽  

The article presents the results of surveys of 311 class IV hydraulic structures carried out in 2016-2020 in the Moscow region. All the reservoirs of the surveyed hydraulic units were classified according to their characteristic features, the technical condition of culverts and dams was assessed, there was established the safety level of both separate structures and hydraulic units as a whole. During the surveys, the technical parameters of the surveyed structures were established, the state of each structure and the hydraulic unit as a whole was assessed, a possibility of their accident and a risk level for the downstream areas were considered. At the same time, recommendations were developed for the elimination of serious damage and, with the help of an examination, the amount of the cost of the necessary repair work was determined. The paper also assesses the issues of the ecological state of the areas where the hydraulic units are located and the hydraulic units themselves as blocks of the ecological framework of the territories.


2021 ◽  
Vol 343 ◽  
pp. 10020
Author(s):  
Dragos Pasculescu ◽  
Nicolae Daniel Fita ◽  
Emilia Grigorie ◽  
Florin Gabriel Popescu ◽  
Alina Daniela Handra

The aim of occupational health and safety in the context of industrial safety is to provide the national industry with a proper operation state, an ergonomic, optimal and healthy work environment, safe workers and workplaces, safety of industrial processes, to limit and mitigate any unforeseen situation generated by events which might negatively affect the occupational health and safety level. The current paper approaches the risk assessment in terms of occupational health and safety within a cross-border 400/220 kV power substation interconnected to the European power grid, identified and assigned as European critical infrastructure. The assessment is carried out using the INCDPM Bucharest method, in order to establish the risk/safety levels in a quantitative manner, based on a systemic analysis and on the assessment of risks of accidents and professional diseases. The application of the method ends in a workplace assessment sheet which comprises the global risk level of the power substation and which sets the grounds for the plan for preventing accidents and professional diseases within the analysed power substation.


Author(s):  
Xiaochuan Wang ◽  
Huixian Wang

At present, the situation of coal mine safety production is still grim. The key to solve the problem is to analyze the risk of management activities in the process of coal mine safety production. This paper takes the management activities in the process of coal mine safety production as the research object. Firstly, according to the coal mine safety production standardization management system, the safety production management activities are carried out layer by layer. Then, the Failure Mode and Effect Analysis (FMEA) is used to identify the human errors that lead to the failure of management activities at all levels of coal mine. Furthermore, the Fuzzy Set Theory is used to determine the evaluation results of experts on the risk level of coal mine safety production management activities. Combined with Bayesian network (BN), the risk assessment model of coal mine safety production management activities is established. Through the model, the risk probability of coal mine enterprise management activities is accurately calculated. According to the evaluation results, the risk of management activities in coal mine safety production is analyzed.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1235
Author(s):  
Jiachen Sun ◽  
Haiyan Wang ◽  
Jie Chen

Safety is the premise of efficiency and effectiveness in the port operation. Safety investment is becoming a vital part of port operation in current era in order to overcome different types of hazards the port operation exposed to. This paper aims to improve the safety level of port operation through analyzing its influencing factors and exploring the interactions between the safety investment and system risk level. By analyzing the key factors affecting the port operation and their mutual relationship within a man–machine–environment–management system, a decision-making model of safety investment in port enterprise was established by system dynamics (SD). An illustration example and a sensitivity analysis were carried out to justify and validate the proposed model. The results show that increasing the total safety investment of port enterprises, improving the safety management investment on personnel, and strengthening the implementation effect of investment can improve the degree of port security to a certain extent. The strength of the proposed work is its practical application in current scenarios using real time data and the ability to provide a baseline approach for port enterprises to formulate safety investment strategy.


2019 ◽  
Vol 11 (23) ◽  
pp. 6848 ◽  
Author(s):  
Ping Guo ◽  
Huimin Li ◽  
Guangmin Zhang ◽  
Yang Zhang

With the rapid development of the transformation and urbanization of Chinese social structures, more and more industrial heritage renewal projects are emerging. However, there are significant policy risks associated with Chinese industrial heritage renewal projects. Through a literature review, a total of 20 policy risk factors were determined, and a total of 10 industrial heritage renewal project managers in six regions nationwide conducted a pilot study. A questionnaire survey was conducted to collect 398 evaluations of these 20 risk factors from relevant professionals. Secondly, through confirmatory factor analysis, a six-part policy risk assessment model was established. The results indicated that the critical variables that affect the policy risk level were: (1) industry maturity, (2) tax policy, (3) financial freedom, (4) the rule of law, (5) local market size, and (6) local market experience. Moreover, there are significant opportunities and policy risks in Chinese industrial heritage renewal projects, and appropriate strategies can capture these opportunities and mitigate risks. As there are few pieces of research on the policy risks of industrial heritage renewal projects in China, this study has a certain reference significance for the policy risk management of industrial heritage renewal projects in China.


Author(s):  
Shinichi Kaita ◽  
Toshikazu Shibasaki ◽  
Takayasu Tahara

Considering long term stable supply of oil fuel, the world largest long-term storage system of crude oil has been installed in Japan. In order to ensure safety of large size above ground storage tanks, global assessment system for structural integrity of tank considering risk level and shut down inspection interval has been developed on Risk Based Inspection, RBI and Fitness-For-Service, FFS for storage tanks of crude oil for national security reserve.


Sign in / Sign up

Export Citation Format

Share Document