scholarly journals Synthesis and Characterization of Ni-WO3/Sulfated Zirconia Nano catalyst for Isomerization of N-Hexane and Iraqi Light Naphtha

2021 ◽  
Vol 22 (4) ◽  
pp. 1-10
Author(s):  
Safa Abdul Salam Kamel ◽  
Wadood Taher Mohammed ◽  
Haider Aljendeel

This work deals with preparation of Sulfated Zirconia catalyst (SZ) for isomerization of n-hexane model and refinery light naphtha, as well as enhanced the role of promoters to get the target with the mild condition, stability, and to prevent formation of coke precursors on strong acidic sites of the catalyst. The prepared SZ catalysts were characterization by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer –Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA), Scanning Electron Microscope (SEM) and atomic force microscopy (AFM) Analyzer. The results illustrate that the maximum conversion and selectivity for n-hexane isomerization with Ni-WSZ and operating temperature of 150 °C was 80.1%  and 96 %   respectively .Other set of experimental with light naphtha , the results show that the maximum conversion and selectivity with Ni-WSZ and operating temperature of 150 °C  was 73.6%   and  74%   respectively.

2020 ◽  
Vol 10 (9) ◽  
pp. 3035
Author(s):  
Edward Henry Jiménez Calderón ◽  
Ana Emperatriz Paucar Tipantuña ◽  
Paulina Fernanda Herrera Mullo ◽  
Daniel Alejandro Hidalgo Cháfuel ◽  
Washington Ruiz ◽  
...  

The optimal conditions of the catalytic activation of allophane were evaluated for possible use as a catalyst within a fluidized bed catalytic cracking unit (FCC). The physicochemical properties of natural allophane and activated allophane were studied by using an alkaline activating agent, followed by a hydrothermal treatment. For the characterization, analytical techniques were used: Fourier transform infrared spectroscopy, particle size, (BET) surface area, thermogravimetry (TGA), X-ray diffraction (XRD), chemisorption, X-ray fluorescence (XRF), atomic force microscopy (AFM), and chromatography. The catalytic evaluation was determined by the (MAT) micro activity test equipment constructed according to ASTM D-3907/D3907M-2019. In addition, the Navier–Stokes 3D equations (nonlinear partial derivatives) were studied, which allow studying molecular dynamics contributing substantively to chemical kinetics describing the process of decomposition of crude oil in thermal cracking, determining the maximum temperature at which it retains its properties through the action of heat.


2004 ◽  
Vol 47 (3) ◽  
pp. 179-189 ◽  
Author(s):  
Takao Kimura ◽  
Toshio Shimizu ◽  
Tetsuya Imai

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Hua Chen ◽  
Jing Yang ◽  
Zhijun Hu ◽  
Bingbing Zheng ◽  
Jun Sun ◽  
...  

Changes of the morphology and pore structure of old corrugated container (OCC) fibers during an alkyl ketene dimer (AKD) sizing process were studied. The resulting samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, and BET surface area analysis. The length of fibers had obvious influence on the AKD sizing effect, and the length of fibers ranged from 100 to 200 meshes showed the best sizing performance. The surface roughness of 0.3% AKD sizing OCC fibers decreased from 27.949 nm to 12.811 nm. Compared with the control sample, the pore volume of fibers sized with 0.1% AKD decreased 4.3% when the average pore diameter was fixed at 2.4~3.0 nm. And when the usage of AKD increased to 0.3% and 0.5%, the pore volume decreased 1.4% and 6.3% accordingly. The decrease in the pore volume of AKD-sized fiber indicated the penetration and deposition of dispersed particles of AKD in the fiber lumens.


2021 ◽  
Vol 16 (4) ◽  
pp. 716-732
Author(s):  
Amer Talal Nawaf ◽  
Shymaa Ali Hameed ◽  
Layth T. Abdulateef ◽  
Aysar Talib Jarullah ◽  
Mohammed S. Kadhim ◽  
...  

Oxidative desulfurization process (ODS), enhanced with a novel metal oxide (Ag ions) as an active component over nano-zeolite that has not been reported in the literature, is used here to improve the fuel quality by removing mercaptan (as a model sulfur compound in the light naphtha). Nano-crystalline (nano-support (Nano-zeolite)) composite is prepared by Incipient Wetness Impregnation method loaded with a metal salt to obtain 0.5, 1 and 1.5% of Ag2O3 over Nano-zeolite. The new homemade nano-catalysts (Ag2O3/Nano-zeolite) prepared are characterized by Brunauer–Emmett–Teller (BET) (surface area, pore volume and pore size), X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) analysis. The ODS process is then used to evaluate the performance of the catalysts for the removal of sulfur at different reaction temperatures (80–140 °C) and reaction times (30–50 min) in a batch reactor using the air as oxidant. 87.4% of sulfur removal has been achieved using 1% silver oxide loaded on Nano zeolite (1% of Ag2O3/Nano-zeolite) giving a clear indication that our newly designed catalyst is highly efficient catalyst  in the removal of sulfur compound (mercaptan) from naphtha. A new mechanism of chemical reaction for sulfur removal by oxygen using the new homemade catalyst (Ag2O3/Nano-zeolite) prepared has been suggested in this study. The best kinetic model parameters of the relevant reactions are also estimated in this study using pseudo first order technique based on the experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


2021 ◽  
pp. 2176-2187
Author(s):  
S.M. AbdulKareem ◽  
M.H. Suhail ◽  
I. K. Adehmash

     Chromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3 gas were studied and discussed. In the present work, we found that the sensitivity was increased upon increasing the concentration ratio from 3 to 5%wt of ZnO, whereas it was decreased again over that value. Also, we found that the sensitivity was increased when increasing operating temperature, while the response time was decreased. The optimum concentrations ratio for NH3 gas sensitivity at 5%wt ZnO revealed sensitivity of 66.67% and response time of 14s at operating temperature of 300oC and 700mJ PLD energy.


2021 ◽  
Vol 878 ◽  
pp. 62-72
Author(s):  
Edward H. Jiménez Calderon ◽  
Marco Rosero ◽  
Magdalena Diaz

The traditional mouth cover masks can be made by hand. But with the arrival of the Coronavirus pandemic, these masks have special requirements and we will have to use these until at least 2022. Therefore, the current technological problem is what must be the appropriate filter nanomaterial (cuprum, zinc, zeolite or Allophane) to absorb and/or destroy coronaviruses. In addition, the preparation of this specific purpose mask must be certified, easy to manufacture and inexpensive. Taking these requirements into account, there is a suitable nanomaterial called Allophane, which has active centers of silicon and aluminum (Si / Al), which rapidly absorb micro droplets and nanodrops of water [3, 5] nm. Coronaviruses are microscopically embedded in water droplets. To build an absorbent filter that also destroys coronaviruses, we can use some organic surfactant in optimal proportions and that works cooperatively with Allophane. The physicochemical properties of natural Allophane were studied. For the characterization, analytical techniques were used: Fourier transform infrared spectroscopy (FTIR), BET surface area, X-ray diffraction (XRD), Chemisorption and Atomic Force Microscopy (AFM). In addition, the Navier Stokes 3D equations were studied, which allow us studying molecular dynamics contributing substantively to chemical kinetics describing the process of absorption of water and decomposition of water + coronavirus.


2018 ◽  
Vol 16 (37) ◽  
pp. 32-45
Author(s):  
Bushra A. Hasan

Compounds were prepared from In2O3 doped SnO2 with different doping ratio by mixing and sintering at 1000oC. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3: SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass and p-type wafer Si(111) substrates at ambient temperature under vacuum of 10-3 bar thickness of ~100nm. X-ray diffraction and atomic force microscopy were used to examine the structural type, grain size and morphology of the prepared thin films. The results show the structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared a reduction of degree of crystallinity with the increase of doping ratio. Atomic Force Microscopy (AFM) measurements show the average grain size exhibit to change in non-systematic manner with the increase of doping ratio with tin oxide. The average grain size increases at doping ratios 1, 5 and 7 % from 52.48 to 79.12, 87.57, and 105.59 nm respectively and decreases at residual doping ratio. The average surface roughness increases from 0.458 to 26.8 nm with the increase of doping ratio. The gas sensing measurements of In2O3:SnO2 thin films prepared on p-Si to NO2 gas showed good sensitivity and Maximum sensitivity (50) obtained for In2O3:SnO2 prepared on p-Si at operating temperature 573 K and doping ratio 7 % and 9 %. Maximum speed of response time (8 sec) at operating temperature 573 K and doping ratio 1 %.


2011 ◽  
Vol 110-116 ◽  
pp. 1270-1277
Author(s):  
B. Bharath ◽  
G. Pradeep Reddy

SnO2 powder was prepared by soft chemical method. The Structure and Morphological characteristics of SnO2powder was analyzed by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV, FTIR and Scanning Electron Microscopy (SEM) techniques. Its gas sensing properties are analyzed towards toxic gas at ppm level. Sensitivity of a SnO2oxide based sensor towards an analyte gas can be enhanced by using the metals in different geometries viz, thick film. The gas sensing properties were studied towards reducing gas like ethanol and it is observed that SnO2shows high response to ethanol at relatively lower operating temperature. The SnO2nanomaterial shows better sensitivity towards ethanol at an operating temperature 2500C. Ethanol vapour has been one of the most extensively studied gases for metal oxide gas sensors.


2021 ◽  
Vol 900 ◽  
pp. 112-120
Author(s):  
Souad G. Khalil ◽  
Mahdi M. Mutter

This work presents the development of n-type (TiO2) and p-type (ZnO) gas-sensitive materials from ZnO doped TiO2 thin films prepared by pulsed laser deposition technique (PLD) on a glass substrate as a gas sensor of CO2 gas. TiO2 gas-sensing layers have been deposited over a range of ZnO content (0, 20, and 40) wt %. The obtained thin films analysis by atomic force microscopy (AFM), and X-ray diffraction (XRD). Electrical characterization shows that TiO2:ZnO thin films were p-type conductivity and ZnO added was unable to change the composition to the n-type conductivity. There are notable gas-sensing response differences between n-type and p-type ZnO doped TiO2 thin film. The responses toward all tested oxidizing gases tend to increase with operating temperature for the n-type TiO2 films. Besides, the p-type ZnO doping results in a significant response improvement toward tested oxidizing gases such as CO2 gas at the low operating temperature of 60 °C.


Sign in / Sign up

Export Citation Format

Share Document