soluble fas ligand
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 13)

H-INDEX

29
(FIVE YEARS 1)

Author(s):  
Leonardo Lorente ◽  
María M. Martín ◽  
Antonia Pérez-Cejas ◽  
Agustín F. González-Rivero ◽  
Luis Ramos-Gómez ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dongjin Jeong ◽  
Hye Sung Kim ◽  
Hye Young Kim ◽  
Min Jueng Kang ◽  
Hyeryeon Jung ◽  
...  

To date, no study has demonstrated that soluble Fas ligand (sFasL)-mediated inflammation is regulated via interaction with Fas in vivo. We found that FasL interacts specifically with tumor necrosis factor receptor superfamily (TNFRSF)10B, also known as death receptor (DR)5. Autoantibody-induced arthritis (AIA) was attenuated in FasL (Faslgld/gld)- and soluble FasL (FaslΔs/Δs)-deficient mice, but not in Fas (Faslpr/lpr and Fas–/–)- or membrane FasL (FaslΔm/Δm)-deficient mice, suggesting sFasL promotes inflammation by binding to a Fas-independent receptor. Affinity purification mass spectrometry analysis using human (h) fibroblast-like synovial cells (FLSCs) identified DR5 as one of several proteins that could be the elusive Fas-independent FasL receptor. Subsequent cellular and biochemical analyses revealed that DR5 interacted specifically with recombinant FasL–Fc protein, although the strength of this interaction was approximately 60-fold lower than the affinity between TRAIL and DR5. A microarray assay using joint tissues from mice with arthritis implied that the chemokine CX3CL1 may play an important downstream role of the interaction. The interaction enhanced Cx3cl1 transcription and increased sCX3CL1 production in FLSCs, possibly in an NF-κB-dependent manner. Moreover, the sFasL–DR5 interaction-mediated CX3CL1–CX3CR1 axis initiated and amplified inflammation by enhancing inflammatory cell influx and aggravating inflammation via secondary chemokine production. Blockade of FasL or CX3CR1 attenuated AIA. Therefore, the sFasL–DR5 interaction promotes inflammation and is a potential therapeutic target.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253260
Author(s):  
Osamu Kajikawa ◽  
Raquel Herrero ◽  
Yu-Hua Chow ◽  
Chi F. Hung ◽  
Gustavo Matute-Bello

We have previously reported that the 26-amino acid N-terminus stalk region of soluble Fas ligand (sFasL), which is separate from its binding site, is required for its biological function. Here we investigate the mechanisms that link the structure of the sFasL stalk region with its function. Using site-directed mutagenesis we cloned a mutant form of sFasL in which all the charged amino acids of the stalk region were changed to neutral alanines (mut-sFasL). We used the Fas-sensitive Jurkat T-cell line and mouse and human alveolar epithelial cells to test the bioactivity of sFasL complexes, using caspase-3 activity and Annexin-V externalization as readouts. Finally, we tested the effects of mut-sFasL on lipopolysaccharide-induced lung injury in mice. We found that mutation of all the 8 charged amino acids of the stalk region into the non-charged amino acid alanine (mut-sFasL) resulted in reduced apoptotic activity compared to wild type sFasL (WT-sFasL). The mut-sFasL attenuated WT-sFasL function on the Fas-sensitive human T-cell line Jurkat and on primary human small airway epithelial cells. The inhibitory mechanism was associated with the formation of complexes of mut-sFasL with the WT protein. Intratracheal administration of the mut-sFasL to mice 24 hours after intratracheal Escherichia coli lipopolysaccharide resulted in attenuation of the inflammatory response 24 hours later. Therefore, the stalk region of sFasL has a critical role on bioactivity, and changes in the structure of the stalk region can result in mutant variants that interfere with the wild type protein function in vitro and in vivo.


Author(s):  
Leonardo Lorente ◽  
María M. Martín ◽  
Antonia Pérez-Cejas ◽  
Agustín F. González-Rivero ◽  
Luis Ramos-Gómez ◽  
...  

2020 ◽  
Author(s):  
Saskia D. van Asten ◽  
Peter-Paul Unger ◽  
Casper Marsman ◽  
Sophie Bliss ◽  
Tineke Jorritsma ◽  
...  

AbstractDifferentiation of antigen-specific B cells into class-switched, high affinity antibody-secreting cells provides protection against invading pathogens but is undesired when antibodies target self-tissues in autoimmunity, beneficial non-self blood transfusion products or therapeutic proteins. Essential T cell factors have been uncovered that regulate T cell-dependent B cell differentiation. We performed a screen using a secreted protein library to identify novel factors that promote this process and may be used to combat undesired antibody formation. We tested the differentiating capacity of 756 secreted proteins on human naive or memory B cell differentiation in a setting with suboptimal T cell help in vitro (suboptimal CD40L and IL-21). High-throughput flow cytometry screening and validation revealed that type I IFNs and soluble FAS ligand (sFASL) induce plasmablast differentiation in memory B cells. Furthermore, sFASL induces robust secretion of IgG1 and IgG4 antibodies, indicative of functional plasma cell differentiation. Our data suggest a mechanistic connection between elevated sFASL levels and the induction of autoreactive antibodies, providing a potential therapeutic target in autoimmunity. Indeed, the modulators identified in this secretome screen are associated with systemic lupus erythematosus and may also be relevant in other autoimmune diseases and allergy.


2020 ◽  
Author(s):  
Kuan-Wen Su ◽  
Chih-Yung Chiu ◽  
Ming-Han Tsai ◽  
Sui-Lin Liao ◽  
Li-Chen Chen ◽  
...  

Abstract Background Serum or cord blood soluble Fas ligand (FasL) has been related to asthma, allergic rhinitis, and atopic dermatitis in cross-sectional and short-term follow-up studies. However, the association of cord blood soluble FasL with long-term allergic outcomes has seldom been investigated. Thus, this study investigated the relationship between cord blood soluble FasL and long-term allergic outcomes in a follow-up birth cohort. Methods The Prediction of Allergies in Taiwanese Children birth cohort study recruited healthy newborns upon delivery. At birth, blood was collected from the umbilical cords of these children, and the cord blood soluble Fas ligand levels were measured. At the age of seven years, the allergic outcome of each child was diagnosed by pediatric allergists and pulmonologists. Tests were conducted to measure the specific immunoglobulin E, fractional exhaled nitric oxide (FeNO), and pulmonary function levels of each child. Results Cord blood soluble FasL levels were higher in 7-year-old children with allergic rhinitis (Odds ratio [OR] = 2.41, p = .012) and expiratory airway obstruction (the highest forced expiratory volume in 1 second/ forced vital capacity < 90%, OR = 2.11, p = .022). The FeNO and Dermatophagoides pteronyssinus-specific immunoglobulin E levels of 7-year-old children were positively correlated with cord blood soluble FasL levels (p = .006 and .02, respectively). Conclusions In this birth cohort, the cord blood soluble FasL levels were associated with allergic rhinitis, obstructive-type lung function, FeNO, and house dust mite sensitization in 7-year-old children. The cord blood soluble FasL level might be used as a predictor for allergic diseases in children who are 7 years old.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1569
Author(s):  
Chen-Tzu Chiu ◽  
Pei-Wen Wang ◽  
Meshach Asare-Werehene ◽  
Benjamin K. Tsang ◽  
Dar-Bin Shieh

Head and neck cancer (HNC) accounts for more than 330,000 cancer deaths annually worldwide. Despite late diagnosis being a major factor contributing to HNC mortality, no satisfactory biomarkers exist for early disease detection. Cytoplasmic gelsolin (cGSN) was discovered to predict disease progression in HNC and other malignancies, and circulating plasma gelsolin (pGSN) levels are significantly correlated with infectious and inflammatory disease prognoses. Here, the plasma levels of five candidate biomarkers (circulating pGSN, squamous cell carcinoma antigen, cytokeratin 19 fragment, soluble Fas, and soluble Fas ligand (sFasL)) in 202 patients with HNC and 45 healthy controls were measured using enzyme-linked immunosorbent assay or Millipore cancer multiplex assay. The results demonstrated that circulating pGSN levels were significantly lower in patients with HNC than in healthy controls. Moreover, circulating pGSN outperformed other candidate biomarkers as an independent diagnostic biomarker of HNC in both sensitivity (82.7%) and specificity (95.6%). Receiver operating characteristic curves indicated that combined pGSN and sFasL levels further augmented this sensitivity (90.6%) for early disease detection. Moreover, higher pGSN levels predicted improved prognosis at both 5-year overall survival and progression-free survival. In conclusion, circulating pGSN could be an independent predictor of favorable clinical outcomes and a novel biomarker for the early HNC detection in combination with sFasL.


2020 ◽  
Author(s):  
Kuan Wen Su ◽  
Chih Yung Chiu ◽  
Ming Han Tsai ◽  
Sui Ling Liao ◽  
Li Chen Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document