bluetooth communication
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 34)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Ravi Kishore Veluri

Abstract: While various ad hoc mobile wireless networks are already accessible, Bluetooth is one of the most up-to-date. A single-hop connection known as piconet is a simple Bluetooth communication architecture, allowing for just eight functioning electronic equipment, seven of which are operational slaves under a single master. A common hub called a relay links a huge network named Scatternet to a number of piconets. The efficacy of Scatternet design is clearly intrinsically connected to the effectiveness of relay nodes. Because every relay has several piconet transactions to process and manage, a reduction in the number of switches might lead to poor performance instead. The major aim of this research is to examine performance characteristics which impact interplay since the role of the base station is to multiple piconet transitions. In this study, we evaluate and respond to the technical issues that must be optimally solved the Scatternet data flow based on the relay node. Keywords: Bluetooth, Piconet, Scatternet, Relay Node


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanh Huy Phung ◽  
Anton Nailevich Gafurov ◽  
Inyoung Kim ◽  
Sung Yong Kim ◽  
Kyoung Min Kim ◽  
...  

AbstractWith the development of technology, wireless and IoT devices are increasingly used from daily life to industry, placing demands on rapid and efficient manufacturing processes. This study demonstrates the fabrication of an IoT device using a roll-to-roll printing process, which could shorten the device fabrication time and reduce the cost of mass production. Here, the fabricated IoT device is designed to acquire data through the sensor, process the data, and communicate with end-user devices via Bluetooth communication. For fabrication, a four-layer circuit platform consisting of two conductive layers, an insulating layer including through holes, and a solder resist layer is directly printed using a roll-to-roll screen printing method. After the printing of the circuit platform, an additional layer of solder paste is printed to assemble the electrical components into the device, inspiring the fully roll-to-roll process for device fabrication. Successful IoT device deployment opens the chance to broaden the roll-to-roll fabrication process to other flexible and multilayer electronic applications.


Author(s):  
RAHMA DIAH ZUHROINI ◽  
Dyah Titisari ◽  
Torib Hamzah ◽  
T. K Kho

Health problems with cardiovascular system disorders are still ranked high, according to data from the WHO reported that there are about 31% of causes of death globally are cardiovascular diseases. The purpose of this study was to develop a 12 lead electrocardiograph with 2 displays and the HC-05 as a real-time transmitter of heart signal data. The electrocardiogram signal is obtained from the wiretapping by attaching the electrode cable to the Lead I, Lead II, Lead III, aVR, aVL, and aVF leads, then processed on IC AD620, HPF and LPF filters and non-inverting amplifiers and then processed using Arduino UNO for further display. in the form of a signal on the Delphi 7 application. The research method is to measure the heart signal on the ECG Simulator, by testing several BPMs, namely 30, 60, 120 and 240 on each lead. After testing the signal equation at the 0.5mV setting by calculating the error rate, the highest error value is obtained in lead I, lead aVL and aVF of 7.14% and the smallest error is 3.57% error in lead III. Then at the 1mV setting by calculating the error rate, the highest error value in lead aVL is 7.14% and the smallest error is 2.36%. at the 2mV setting by calculating the error rate, the highest error value is obtained in leads aVL and aVF of 5.71% and the smallest error is obtained by an error of 2.1% in lead II. the results of this study are implemented so that in the future an ECG examination can be carried out and then monitored remotely like a doctor's room because the data communication uses bluetooth.


Author(s):  
Priyambada Cahya Nugraha ◽  
Muhammad Ridha Mak'ruf ◽  
Lusiana ◽  
Sari Luthfiyah

Monitoring the baby's health status is very important, especially for babies born prematurely. Oxygen saturation levels in newborns are very important to know because when the oxygen saturation levels in newborns are low, it is necessary to watch out for hemodynamic abnormalities in the baby. Measurement of oxygen saturation levels in newborns can help detect congenital abnormalities in infants early. This study aims to design an equipment system to continuously monitor the condition of oxygen saturation in newborns. Where in this discussion a monitoring tool is used to monitor 2 premature babies in a baby incubator simultaneously using a Neonatal Fingertip sensor. The system will display the oxygen saturation (SpO2) value and signal. Monitoring on this tool is done wirelessly using the HC-05. Based on the results of tests and measurements in 5 different patients with a pulse oximeter comparison, the difference value of 1% in each patient's results was obtained. The results of this study will greatly help facilitate the work of paramedics in monitoring the vital conditions of newborn babies.


2021 ◽  
Vol 36 (1) ◽  
pp. 534-540
Author(s):  
Nurul Anis Syahira Kamarudin ◽  
Ili Najaa Aimi Mohd Nordin ◽  
Dalila Misman ◽  
Nurulaqilla Khamis ◽  
Muhammad Rusydi Muhammad Razif ◽  
...  

This paper presents a prototype of Water Surface Mobile Garbage Collector Robot built in motivation to educate the people to love and monitor the health of our rivers by collecting the trash themselves using mobile robot. The garbage collector is designed aimed for the cleaning of small-scale lakes, narrow rivers, and drains in Malaysia. The navigation of the robot is controlled using wireless Bluetooth communication from a smartphone application. The performance of the water garbage collector in terms of manoeuvring control efficiency and garbage collection load capacity was tested and evaluated. Based on the experimental results from a swimming pool, it can operate within a 4-metre range and collect 192 grams of small to medium sized recyclable garbage such as food packages, water bottles, and plastics in 10 seconds. It managed to float and navigate on the Panchor River within Bluetooth network range. A strong, lightweight and waterproof material is recommended for use for this water garbage collector. A proximity sensor or image processing technique for detecting garbage on the water surface may be studied and included in the future to enable a fully autonomous manoeuvring control system.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3336
Author(s):  
Yanchao Yu ◽  
Ni Li ◽  
Yan Li ◽  
Wentao Liu

The acquisition and analysis of EEG signals of dolphins, a highly intelligent creature, has always been a focus of the research of bioelectric signals. Prevailing cable-connected devices cannot be adapted to data acquisition very well when dolphins are in motion. Therefore, this study designs a novel, light-weighted, and portable EEG acquisition device aimed at relatively unrestricted EEG acquisition. An embedded main control board and an acquisition board were designed, and all modules are encapsulated in a 162 × 94 × 60 mm3 waterproof device box, which can be tied to the dolphin’s body by a silicon belt. The acquisition device uses customized suction cups with embedded electrodes and adopts a Bluetooth module for wireless communication with the ground station. The sampled signals are written to the memory card on board when the Bluetooth communication is blocked. A limited experiment was designed to verify the effectiveness of the device functionality onshore and underwater. However, more rigorous long-term tests on dolphins in various states with our device are expected in future to further prove its capability and study the movement-related artifacts.


2021 ◽  
Vol 21 (1) ◽  
pp. 31-34
Author(s):  
A.C. Gheorghe ◽  
M. I. Matei

Abstract The study aims for the development of a control system for D.C motors through an application made for Android mobile devices. The D.C motors are represented by a robot model car and the control application communicates with the system via Bluetooth technology. The Android mobile device user must install an application on his mobile device, then, the user must turn on the Bluetooth communication on the mobile device. The user can use various commands to control the robot model car such as front, back, stop, left, right. These commands are sent from the Android mobile device to the Bluetooth receiver, which is interfaced with the control system. The control system has a Bluetooth HC-06 receiver that receives commands from the control application and sends them to the Arduino Nano microcontroller to control the motors through two L298N drivers.


2021 ◽  
Vol 11 (1) ◽  
pp. 50-54
Author(s):  
Alfan Tamamy ◽  
Koesmarijanto Koesmarijanto ◽  
Ridho Hendra Yoga Perdana

People want a vehicle that is ready to use without having to wait for long or in the sense that the performance of an activity can run efficiently. With a remote control that can control the vehicle remotely, activities in setup mode will be more efficient. In general, remote control is used in motorized vehicles using Infra-red or Bluetooth communication with communication distance 60meters. So we need LoRa module that has longer beam range. The purpose of research is to design remote control and receiver that can control the vehicle such as opening vehicle door lock,  activating the AC, to the starter mode on the car contact with a wider range of sending and receiving information. The results of research indicate that LoRa module has received signal strength value (RSSI) of -65dBm when LOS (line of sight) at distance 10meters and RSSI of -66dBm at non-LOS (non-line of sight) at the same distance. SNR of 9.25dB when LOS and SNR of 6.0dB when non-LOS at distance 10meters. The research results of sending and receiving remote control data have a maximum distance when non-LOS with obstacles 5mm thick glass and 20 cars is 100 meters with a received signal strength of -112dBm. It can be concluded that for non-LOS connectivity between the LoRa SX1278 has an effectiveness distance at 50meters with an RSSI value of -99dBm and an SNR of 0.25dB, for a LOS condition it has an effectiveness at distance 50meters with RSSI value of -96dBm and SNR of 9dB.


Sign in / Sign up

Export Citation Format

Share Document