An optimal variable impedance control with consideration of the stability

Author(s):  
Zhehao Jin ◽  
Andong Liu ◽  
Wen-An Zhang ◽  
Li Yu
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


Author(s):  
Farhad Aghili

A heavy payload attached to the wrist force/moment (F/M) sensor of a manipulator can cause the conventional impedance controller to fail in establishing the desired impedance due to the noncontact components of the force measurement, i.e., the inertial and gravitational forces of the payload. This paper proposes an impedance control scheme for such a manipulator to accurately shape its force-response without needing any acceleration measurement. Therefore, no wrist accelerometer or a dynamic estimator for compensating the inertial load forces is required. The impedance controller is further developed using an inner/outer loop feedback approach that not only overcomes the robot dynamics uncertainty, but also allows the specification of the target impedance model in a general form, e.g., a nonlinear model. The stability and convergence of the impedance controller are analytically investigated, and the results show that the control input remains bounded provided that the desired inertia is selected to be different from the payload inertia. Experimental results demonstrate that the proposed impedance controller is able to accurately shape the impedance of a manipulator carrying a relatively heavy load according to the desired impedance model.


Author(s):  
Tomoyuki Takahashi ◽  
Jun Iwasaki ◽  
Hiroshi Hosaka

The gyroscopic power generator produces a high-speed rotation of magnets from low-frequency vibrations and supplies electric power to information and communication devices that use human vibrations in daily life. In this paper, in order to increase the stability and the output power of the generator, a simple equation that indicates the steady state approximate solution of the phase difference is derived. From the derived solution, a control method for the steady state is verified by the simulations. In order to maintain the stability and high power generation for variable input vibrations, the impedance control method using the phase difference is developed and verified experimentally.


Author(s):  
Farhad Aghili

This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of external applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented. Finally, experimental results are presented.


Robotica ◽  
2013 ◽  
Vol 31 (7) ◽  
pp. 1155-1167 ◽  
Author(s):  
Hamid Sadeghian ◽  
Luigi Villani ◽  
Mehdi Keshmiri ◽  
Bruno Siciliano

SUMMARYThis paper presents a dynamic-level control algorithm to meet simultaneously multiple desired tasks based on allocated priorities for redundant robotic systems. It is shown that this algorithm can be treated as a general framework to achieve control over the whole body of the robot. The control law is an extension of the well-known acceleration-based control to the redundant robots, and considers also possible interactions with the environment occurring at any point of the robot body. The stability of this algorithm is shown and some of the previously developed results are formulated using this approach. To handle the interaction on robot body, null space impedance control is developed within the multi-priority framework. The effectiveness of the proposed approaches is evaluated by means of computer simulation.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Jun Dai ◽  
Yi Zhang ◽  
Hua Deng

Existing hybrid force/position control algorithms mostly explicitly contain a dynamic model. Moreover, force and position controllers will be switched frequently. To solve the above problems, a novel voltage-based weighted hybrid force/position control algorithm is proposed for redundant robot manipulators. Firstly, mapping between voltage and terminal position and orientation is established so that the designed controller can be simplified by adopting the motor current as the feedback to replace the tedious calculation of the dynamic model. Secondly, a voltage-based weighted hybrid force/position control algorithm is proposed to eliminate the selection matrix. Force and position control laws are summed directly through a weighted way to avoid the problems of space decomposition and switching. Thirdly, the stability is proven using Lyapunov stability theory, then the selection method for weighted coefficient is provided. Fourthly, comparative simulations are performed. Results show that the proposed algorithm is suitable for impedance control and hybrid force/position control and can compensate for their deficiencies. Lastly, the transport experiment in the YZ plane is conducted. Results show that position and force accuracies in the Y- and Z-axis directions are 3.489 × 10−4 and 7.313 × 10−4 m and 1.238 × 10−1 and 1.997 × 10−1 N, respectively. Accordingly, it can effectively improve the operation capability and control accuracy.


Author(s):  
Kevin B. Fite ◽  
Michael Goldfarb

This paper presents an architecture and control methodology for a multi-degree-of-freedom teleoperator system. The approach incorporates impedance control of the telemanipulator pair and formulates the system as a single feedback loop encompassing the human operator, telemanipulator, and remote environment. In so doing, multivariable Nyquist-like techniques are used to design compensation for enhanced stability robustness and performance. A measure of the transparency exhibited by the multivariable teleoperator system is attained using matrix singular values. The approach is experimentally demonstrated on a three degree-of-freedom scaled telemanipulator pair with a highly coupled environment. Using direct measurement of the power delivered to the operator to assess the system’s stability robustness, along with the proposed measure of multivariable transparency, the loop-shaping compensation is shown to improve the stability robustness by a factor of almost two and the transparency by more than a factor of five.


Author(s):  
Loris Roveda ◽  
Dario Piga

AbstractIndustrial robots are increasingly used in highly flexible interaction tasks, where the intrinsic variability makes difficult to pre-program the manipulator for all the different scenarios. In such applications, interaction environments are commonly (partially) unknown to the robot, requiring the implemented controllers to take in charge for the stability of the interaction. While standard controllers are sensor-based, there is a growing need to make sensorless robots (i.e., most of the commercial robots are not equipped with force/torque sensors) able to sense the environment, properly reacting to the established interaction. This paper proposes a new methodology to sensorless force control manipulators. On the basis of sensorless Cartesian impedance control, an Extended Kalman Filter (EKF) is designed to estimate the interaction exchanged between the robot and the environment. Such an estimation is then used in order to close a robust high-performance force loop, designed exploiting a variable impedance control and a State Dependent Riccati Equation (SDRE) force controller. The described approach has been validated in simulations. A Franka EMIKA panda robot has been considered as a test platform. A probing task involving different materials (i.e., with different stiffness properties) has been considered to show the capabilities of the developed EKF (able to converge with limited errors) and controller (preserving stability and avoiding overshoots). The proposed controller has been compared with an LQR controller to show its improved performance.


Sign in / Sign up

Export Citation Format

Share Document