Experimental and Analytical Investigation of Ammonia Absorption into Ammonia-Water Solution: Free Absorption

2013 ◽  
Vol 334-335 ◽  
pp. 167-170
Author(s):  
Hatem Mustafa

Absorption phenomenon of ammonia vapor into ammonia water solution has been investigated experimentally, by allowing superheated ammonia vapor to flow into a test cell containing a stagnant pool of ammonia water solution. Before commencing the experiment, the pressure in the test cell P1i, corresponds to the equilibrium vapor of the ammonia-water system at room temperature and initial mass fraction Ci. When the valve is opened, mechanical equilibrium is established quickly and the pressure in the test cell becomes equal to that of the ammonia vapor cylinder. The difference between the initial pressure in the vapor cylinder and the initial pressure in the test cell ΔPi is found to have a major influence on the absorption rate [1]. The interface temperature can be estimated for a transient case, by help of an inverse solution proposed by Monde [2]. The interface concentration Cint obtained by measured ammonia vapour pressure and the estimated interface temperature. The main objective of this study is to investigate the effect of the initial pressure difference and the initial concentration on the interface concentration. A correlation which gives the interface concentration as a function of the initial concentration, the initial pressure difference and time is derived. In addition, the absorbed mass at no pressure difference could be estimated from the absorbed mass at initial pressure difference.

2010 ◽  
Vol 297-301 ◽  
pp. 785-789
Author(s):  
Hatem Mustafa

Ammonia absorption process of ammonia vapor into ammonia water solution has been investigated experimentally, by inserting superheated ammonia vapor into a test cell containing a stagnant pool of ammonia water solution of several ammonia mass fractions, Ci. Before commencing the experiment, the pressure in the test cell corresponds to the equilibrium vapor of the ammonia-water system at room temperature. When the valve is opened, mechanical equilibrium is established quickly and the ammonia vapor diffuses into ammonia solution [1]. The difference between the initial pressure in the vapor cylinder and the initial pressure in the test cell ΔPi is found to have a major influence not only on the absorption rate but also on the estimated interface concentration. The interface concentration Cint of the cases ΔPi = 50 and 100 kPa exhibits a similar tendency, Cint decreases rapidly compared to other initial pressures ΔPi = 150 and 200 kPa. On the other hand, the interface concentration Cint of the cases ΔPi = 250 and 300 kPa are increasing within about 50 sec, then are hardly changing with time. They behave almost in a similar way as of Cint = 0.27 kg/kg. A correlation which gives the total absorbed mass of ammonia as a function of the initial concentration, the initial pressure difference and time is derived. In addition, the absorbed mass at no pressure difference could be estimated from the absorbed mass at initial pressure difference.


1998 ◽  
Vol 120 (1) ◽  
pp. 25-31 ◽  
Author(s):  
J. J. Rizza

An analysis of a low-temperature thermal storage system using an ammonia-water solution both as a refrigerant and as a low-temperature thermal storage material is considered. The thermal storage is useable at a temperature of −27°C and higher. The proposed system is designed to shift electric demand from high to low-demand periods. The system utilizes a heat-operated absorption refrigeration system; however, the generator heat is supplied by a self-contained vapor compression heat pump. The heat pump is operated during the off-peak period to recover the low-temperature thermal storage by reprocessing the stored ammonia-water solution to a lower ammonia-water concentration. The ammonia vapor liberated from solution in the dephlegmator is used in the compressor to produce the generator heat. Three different configurations are considered, including a solar-assisted system. The results are compared to an eutectic salt storage system.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Jeromy Jenks ◽  
Vinod Narayanan

An experimental study of the absorption of ammonia vapor in a constrained thin film of ammonia-water solution is presented. A large aspect ratio microchannel with one of its walls formed of a porous material is used to constrain the thickness of the liquid film. Experiments are performed at a pressure of 2.5 bar absolute and 4 bar absolute and at a fixed weak solution inlet temperature. Weak solution flow rates are varied from 10 g/min to 30 g/min (corresponding to the weak solution Reynolds number, Re, from 15 to 45), inlet mass concentrations are varied from 0% to 15%, and gas flow rates are varied between 1 g/min and 3 g/min (corresponding to the vapor Re from 160 to 520). Six geometries, including three smooth-bottom-walled channels of differing depths and three channels with structured bottom walls, are considered. Results indicate that, for identical rates of vapor absorption, the overall heat transfer coefficient of the 400 μm absorber is in most cases significantly larger than that of other absorbers. For the 150 μm and 400 μm absorbers, a trade-off between the high overall heat and mass transfer coefficients is achieved for the highest vapor to solution flow rate ratio.


2020 ◽  
Vol 12 ◽  
pp. 175682772092171
Author(s):  
Fabian E Habicht ◽  
Fatma C Yücel ◽  
Joshua AT Gray ◽  
Christian O Paschereit

This work contains experimental investigations on the correlation of the detonation initiation process via a shock-focusing device with various initial pressures and mass flow rates. A pulse detonation combustor is operated with stoichiometric hydrogen--air--oxygen mixtures in single cycle operation. A rotationally symmetric shock-focusing geometry evokes the onset of a detonation by the focusing of the reflected leading shock wave, while a blockage plate at the rear end of the test rig is applied to induce an elevated initial pressure. The results show that the reactivity has a major influence on the success rate of detonation initiation. However, measurements with different blockage plates suggest that the mass flow rate has to be considered as well when predicting the success rate. Three main statements can be drawn from the results. (1) An increase in the mean flow velocity induces higher velocity fluctuations which result in a stronger leading shock ahead of the accelerating deflagration front. (2) An increase in the initial static pressure reduces the critical shock strength that must be exceeded to ensure successful detonation initiation by shock focusing. (3) Since the initial pressure is directly linked to the mass flow rate, these contrary trends can cancel each other out, which could be observed for 40% vol. of oxygen in the oxidizer. High-speed images were taken, which confirm that the detonation is initiated in the center of the converging--diverging nozzle due to focusing of the leading shock.


2013 ◽  
Vol 53 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Piotr Antos ◽  
Anna Kurdziel ◽  
Stanisław Sadło ◽  
Maciej Balawejder

Abstract In order to reduce the level of dithiocarbamate fungicide mancozeb residues in blackcurrants, two different ozone treatment procedures were evaluated. The first one entailed washing the plant material with an aqueous solution of ozone. This ozone enriched water solution allowed for a 59% reduction of mancozeb residues, compared with the initial concentration. The latter method was based on the utilization of ozone in a gaseous phase combined with a drying process. In that procedure, samples of blackcurrant fruit were exposed to a 19 ppm ozone concentration, and then the blackcurrants were dried. The utilization of ozone in a gaseous phase permitted a 38% reduction of mancozeb residues, in comparison with the initial concentration. As a result of the combination of both processes; ozonation and drying, a 58% reduction of mancozeb residues was achieved.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Z. H. Wang ◽  
W. G. Ren ◽  
Y. L. Tan ◽  
Heinz Konietzky

Beishan granite is a potential host rock for a high-level radioactive waste (HLW) repository in China. Understanding the hydromechanical (HM) behavior and permeability evolution of Beishan granite is important for the HLW repository safety. Therefore, the granite of Beishan in Gansu province was studied. HM coupled tests are carried out on Beishan granite under different pore pressures. The results show that the initial pressure difference has little influence on permeability measurement before dilatancy starts. However, after onset of dilatancy, the permeability increases with the increasing initial pressure difference. The initial permeability of Beishan granite is about 10−18 m2 under a confining pressure of 20 MPa. In the initial loading phase, the permeability shows a relatively large reduction. Then, the permeability almost keeps constant until dilatancy starts. From dilatancy point to peak stress, permeability increases linearly with volumetric strain. The proposed permeability evolution rule is implemented into a numerical code to perform HM coupled simulations. The simulation results show that the damaged zone first appears at the model boundary and then extends to the inside, forming high volumetric strain areas. And it provides seepage channels for fluid flow. The macroscopic fracture patterns indicate that pore pressure accelerates rock degradation during HM coupling. The obtained results help to understand the damage mechanisms of granite caused by pore pressures and are of great importance for the safety of a HLW repository.


Author(s):  
Ruander Cardenas ◽  
Vinod Narayanan

A one-dimensional, steady state, semi-empirical model of an ammonia-water microscale bubble absorber is presented. The geometry consists of a microchannel through which a solution of ammonia-water flows. Ammonia vapor is injected through one of the walls of the channel. A counter flowing coolant solution removes the heat generated due to absorption from the opposite wall. The 1-D, steady state species and energy transport equations are solved to yield, along the length of the channel, concentration and temperature profiles of the solution stream and the temperature profile of the coolant fluid stream. Values for the overall heat transfer coefficient from experimental results are used in this model. A parametric study of fluid and geometrical parameters based on the model is presented. The varied fluidic parameters include the mass flow rates of the weak solution, coolant, and vapor, the inlet coolant temperature, and the weak solution concentration. Two variations of the vapor distribution that resulted from a geometrical variation of the porous plate are considered: (a) variation in length of the non-porous section, and (b) variation in the number of intermittent sections in which there was no injection of vapor. Trends of the parametric study were consistent with those of experiments. A salient result of the parametric study indicates that incomplete absorption occurs with an increase in weak solution flow rate due to the decrease in residence time within the microchannel for absorption. At a specific fixed flow condition, a single porous section followed by a non-porous section provides the optimal vapor distribution for absorption within the channel. The length of this non-porous section for optimal absorption within the channel is also determined using the model.


2020 ◽  
Vol 12 (2) ◽  
pp. 484 ◽  
Author(s):  
Nima Javanshir ◽  
Seyed Mahmoudi S. M. ◽  
M. Akbari Kordlar ◽  
Marc A. Rosen

A cogeneration cycle for electric power and refrigeration, using an ammonia-water solution as a working fluid and the geothermal hot water as a heat source, is proposed and investigated. The system is a combination of a modified Kalina cycle (KC) which produces power and an absorption refrigeration cycle (ARC) that generates cooling. Geothermal water is supplied to both the KC boiler and the ARC generator. The system is analyzed from thermodynamic and economic viewpoints, utilizing Engineering Equation Solver (EES) software. In addition, a parametric study is carried out to evaluate the effects of decision parameters on the cycle performance. Furthermore, the system performance is optimized for either maximizing the exergy efficiency (EOD case) or minimizing the total product unit cost (COD case). In the EOD case the exergy efficiency and total product unit cost, respectively, are calculated as 34.7% and 15.8$/GJ. In the COD case the exergy efficiency and total product unit cost are calculated as 29.8% and 15.0$/GJ. In this case, the cooling unit cost, c p , c o o l i n g , and power unit cost, c p , p o w e r , are achieved as 3.9 and 11.1$/GJ. These values are 20.4% and 13.2% less than those obtained when the two products are produced separately by the ARC and KC, respectively. The thermoeconomic analysis identifies the more important components, such as the turbine and absorbers, for modification to improve the cost-effectiveness of the system.


2013 ◽  
Vol 743-744 ◽  
pp. 523-530 ◽  
Author(s):  
Jian Cui ◽  
Zhong Min Wang ◽  
Feng Lei Liu ◽  
Pei Bang Dai ◽  
Ran Chen ◽  
...  

Persimmon tannins (PT) were immobilized on a matrix of collagen fiber by cross-linking of glutaraldehyde. The adsorption behaviours to Cr (VI) on PT were investigated including the effects of initial pH, initial concentration of Cr (VI), temperature, adsorbent dosage, adsorption kinetics and the recycling performance of PT adsorbents. The results showed that pH value had a major influence in adsorption. PT showed a strong adsorbability to Cr (VI) in the pH range of 1.0 to 3.0, whereas the effect of temperature on the adsorption was comparatively weaker. The adsorption equilibrium could be well described by Freundlich equation. PT adsorption efficiency of Cr (VI) reached 98.04% and the maximum equilibrium adsorption capacity of Cr (VI) was up to 49.01 mg/g at 303 K with a pH value of 2.0, 100 mg/L of initial concentration of Cr (VI) and 0.1g of adsorbent dosage. The adsorption data could be well fitted by pseudo-second-order rate model. PT adsorbents were characterized by FTIR and EDS. The analysis indicated that the adsorption mechanism was mainly contributed by redox adsorption.


Sign in / Sign up

Export Citation Format

Share Document