scholarly journals Influence of Novel Redirector with Bypass Damping on the Performance of Load-Sensing Steering System

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yuqi Wang ◽  
Xinhui Liu ◽  
Jinshi Chen ◽  
Dongyang Huo

AbstractLoad-sensing steering systems for articulated loaders are prone to large pressure shocks and oscillations during steering operations, affecting the system stability. An optimized structure of the redirector with bypass damping is proposed to improve this phenomenon. In this structure, orifices and throttle grooves are added to the traditional redirector. To control the steering load and working conditions, the steering load of the loader is replaced by a pressure regulating valve. Simulation and experimental results reveal that the redirector with bypass damping has better load-sensing characteristics than the traditional redirector. The peak output pressure shock caused by the load unit step signal decreases from 6.50 to 5.64 MPa, which means the pressure oscillation of the hydraulic system is reduced by 13.4%. The pressure fluctuation time can be reduced from 2.09 to 1.6 s, with a decrease rate of 23.4%. The output pressure oscillation decays swiftly, and the smoothness of the steering operation is improved significantly.

2020 ◽  
Author(s):  
Yu-Qi Wang ◽  
Xin-Hui Liu ◽  
Jin-Shi Chen ◽  
Dong-Yang Huo

Abstract The load sensing steering system of articulated loaders is prone to large pressure shock and oscillation during steering operations, affecting the stability of the steering system. To improve this phenomenon, an optimized structure of the redirector with by-pass damping is proposed, which adding orifices and throttle grooves to the original redirector. In the study, to control the steering load and working conditions, the steering load of the loader is replaced by using a pressure regulating valve. The simulation and experimental results shows that, compared with the traditional redirector, using the novel structure redirector with by-pass damping ensures good load sensing characteristics, the peak output pressure shock caused by the load unit step signal decreases from 65.04bar to 56.35bar, with a decrease rate of 13.4%, reducing the pressure oscillation of the hydraulic system. The pressure fluctuation time can be reduced from 2.09s to 1.6s, with a decrease rate of 23.4%, the output pressure oscillation decays faster, the smoothness of the steering operation is significantly improved.


2013 ◽  
Vol 418 ◽  
pp. 63-69
Author(s):  
Sema Patchim ◽  
Watcharin Po-Ngaen

In last decade, energy efficiency of hydraulic actuators systems has been especially important in industrial machinery applications [1-. And an advanced electronics world most of the applications are developed by microcontroller based embedded system. Energy processor based variable oil flow of hydraulic controller was presented to improve the efficiency of the motor by maintaining with the load sensing. These PIC processor combined with fuzzy controller were help to design efficient optimal power hydraulic machine controller. A functional design of processor and in this system was completed by using load sensing signal to control oil flow. The advantage of the proposed system was optimized operational performance and low power utility. Without having the architectural concept of any motor we can control it by using this method. This is a low cost low power controller and easy to use. The experiment results verified its validity.


2013 ◽  
Vol 655-657 ◽  
pp. 1456-1459
Author(s):  
Li Ping Xu ◽  
Chen Fei Zhan ◽  
De Zhi Ren

Because ordinary hydraulic system exists multiple fault, power waste and hard controlling in actuators due to the complexity of actuators and variability of load. A new hydraulic system based on the load sensing technology is designed for the new type steel arch installing machine. The results of the simulation for forearm loop based on AMESim show that the designed hydraulic system is energy-efficient and load sensing function is effectively achieved, the actuator control performance is well.


Author(s):  
Hassan Yousefi ◽  
Heikki Handroos

Asymmetrical servo-hydraulic systems are commonly used in industry. These kinds of systems are nonlinear in nature and generally difficult to control. Because of changing system parameters, using the same gain will cause overshoot or even loss of system stability. The highly nonlinear behavior of these devises makes them idea subjects for applying different types of sophisticated controllers. This paper is concerned with using two artificial neural networks in compensation the dynamics and position tracking of a second order model reference in a flexible servo-hydraulic system. In present study, a neural network as an acceleration feedforward and another one as a gain scheduling of a proportional controller are proposed. Differential evolution algorithm is used to find the weights and biases to avoid the local minima. The proposed controller was verified with a commonly used p-controller. The results suggest that if the neural networks choose and train well, they improve all performance evaluation criteria such as stability, fast response, and accurate reference model tracking in servo-hydraulic systems.


2011 ◽  
Vol 148-149 ◽  
pp. 942-946 ◽  
Author(s):  
Jin Сhun Song ◽  
Guan Gan Ren ◽  
Yu Jie Ren ◽  
Bai Sen Zhang

The worst problem we are facing in the hydraulic system is the serious loss of energy, due to bad matching between the power components and the actuators and the large pressure loss when oil flowing though the various hydraulic elements, especially in speed governing system. However, Servo pump which is introduced in this paper can cover the problems mentioned above finely. The most difficult thing is its mathematical modeling, in the paper, it is established according to the actual situation. Here, the modeling between servo valve and cylinder, between cylinder and pump are established respectively, then these are connected by geometry relationship, finally ,the whole modeling is completed.


Author(s):  
Hu Quanyi ◽  
Zhang Hong ◽  
Tian Shujun ◽  
Qin Xuxin

The traditional load-sensing hydraulic system is an energy-saving fluid power transmission, which supply “on-demand” flow at a prescribed pressure margin greater than the highest load pressure of the system. In this paper, a novel load-sensing system that has a variable pressure margin through overriding differential pressure control via integrating an electro-proportional three-way type pressure reducing valve into the hydro-mechanical load-sensing valve is proposed. Also, a bond graph model taking into account the dynamic characteristics of load-sensing valve and load-sensing path is constructed, and three group experiments are performed to verify the validation of the model. Based on the bond graph model, a series of theoretical simulations are carried out to prove that the proposed Load-Sensing system enables a satisfactory balance between energy efficiency and rapid dynamic response over a wide range of operating conditions. In addition, due to overriding differential pressure control, mode selection and power limit regulation can also be achieved.


Author(s):  
Janne Koivumäki ◽  
Jouni Mattila

In order to achieve higher energy efficiency for hydraulic systems the Load Sensing (LS) systems, i.e. a Variable Displacement Pump (VDP) with hydro-mechanical control system, can be considered as a state-of-the-art solution. However, as is well known, these traditional hydraulic LS-systems are usually characterized by difficulties in tuning, which can lead to system stability problems. In our previous studies, we have developed a high precision motion control for hydraulic manipulators with separate meter-in meter-out controlled hydraulic actuators. Our control approach was based on the Virtual Decomposition Control (VDC) approach that ensured high motion tracking performance while rigorously guaranteeing the system stability. In this paper, we propose both energy-efficient and high performance nonlinear model based motion control scheme that utilizes the developed servocontrolled Electric Load Sensing (ELS) system for hydraulic robotic manipulators. Experimental results are presented with the proposed ELS-controlled VDP and hydraulic manipulator lifting servoactuator that utilized a separate meter-in meter-out flow control scheme.


2021 ◽  
Vol 64 (5) ◽  
pp. 1435-1448
Author(s):  
Xin Tian ◽  
Patrick Stump ◽  
Andrea Vacca ◽  
Stefano Fiorati ◽  
Francesco Pintore

HighlightsTwo methods (VPM and HVM) are proposed to improve the hydraulic system efficiency of agricultural tractors.VPM and HVM both target reducing the power loss at the flow control valve of the hydraulic system.The solutions are presented conceptually and then numerically modeled, and VPM is tested on an actual tractor.Results show that the VPM solution achieves 6.7% power saving, while HVM achieves 15.6% power saving.Abstract. Load sensing (LS) is a dominant fluid power actuation technology in mobile machines, particularly in construction and agriculture. It has the advantage of guaranteeing good controllability in systems with multiple actuators while promoting higher energy efficiency. Several variants of LS systems have been proposed over the years, and research on cost-effective methods to further increase their efficiency is still of interest for original equipment manufacturers (OEMs) and the fluid power community. This article presents two solution, referred to as variable pump margin (VPM) and hybrid variable margin (HVM), suitable to improve the energy efficiency in pre-compensated LS systems such as those used in agricultural tractors. Both methods allow either downsizing the control valves or reducing the power consumption over the working range. Compared to a standard LS system, the VPM solution lowers the pump pressure using an electronic proportional pressure-reducing valve (ep-PRV), while the HVM solution uses a second ep-PRV in the compensator’s pilot line to further minimize the pressure differential across the LS valve. Simulation and experimental results show that, among the main working conditions, the VPM solution on average achieved 6.7% power saving over the standard LS system, while the model predicted an average improvement of 15.6% for the HVM solution. Keywords: Efficiency, Experiments, Hydraulic, Load sensing, Modeling, Pump.


Sign in / Sign up

Export Citation Format

Share Document