rbcs genes
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 2)

Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 755
Author(s):  
Xiaoying Wu ◽  
Rayyan Khan ◽  
Huajun Gao ◽  
Haobao Liu ◽  
Juan Zhang ◽  
...  

Shading or low light (LL) conditions are a key and necessary cultivation technique in cigar wrapper tobacco production. However, the effect of low light on the photosynthesis in cigar tobacco is not clear. Therefore, this study is designed to know the photosynthesis of cigar tobacco under different light intensities (T200, T100, and T50 μmol m−2 s−1). The results reveal that under low light, T50 especially improved the light interception and increased carbon utilization, as witnessed by a higher specific leaf area and lower specific leaf weight. Low light intensity caused better light interception and carbon utilization in cigar tobacco leaves, and thus thinner leaves are more able to use low light efficiently. The chlorophyll content is related to the photosynthesis process; thus, LL affected the photosynthesis process by lowering the chlorophyll content. Similarly, LL also altered the photosynthetic efficiency by lowering the QY_Lss, qP_Lss, and Rfd_Lss. Additionally, higher expression of Lhcb4.2, Lhcb6, PsbA, PsbB, and PsbD under low light, especially T50, shows that the PSII and antenna proteins complex efficiently utilized the absorbed energy for photosynthesis. Finally, the lower photosynthesis, particularly in T50, is attributed to the downregulation of genes related to NADPH production (petH) and the rubisco enzyme synthesis-related gene (rbcs) for CO2 fixation in the Calvin cycle. Overall, the results show that the photosynthesis is decreased under LL intensities which might be related to lower chlorophyll content and downregulation of petH and rbcs genes.


2020 ◽  
Vol 71 (19) ◽  
pp. 5963-5975 ◽  
Author(s):  
Panupon Khumsupan ◽  
Marta A Kozlowska ◽  
Douglas J Orr ◽  
Andreas I Andreou ◽  
Naomi Nakayama ◽  
...  

Abstract The primary CO2-fixing enzyme Rubisco limits the productivity of plants. The small subunit of Rubisco (SSU) can influence overall Rubisco levels and catalytic efficiency, and is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. However, SSUs are encoded by a family of nuclear rbcS genes in plants, which makes them challenging to engineer and study. Here we have used CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] and T-DNA insertion lines to generate a suite of single and multiple gene knockout mutants for the four members of the rbcS family in Arabidopsis, including two novel mutants 2b3b and 1a2b3b. 1a2b3b contained very low levels of Rubisco (~3% relative to the wild-type) and is the first example of a mutant with a homogenous Rubisco pool consisting of a single SSU isoform (1B). Growth under near-outdoor levels of light demonstrated Rubisco-limited growth phenotypes for several SSU mutants and the importance of the 1A and 3B isoforms. We also identified 1a1b as a likely lethal mutation, suggesting a key contributory role for the least expressed 1B isoform during early development. The successful use of CRISPR/Cas here suggests that this is a viable approach for exploring the functional roles of SSU isoforms in plants.


2020 ◽  
Vol 37 (12) ◽  
pp. 3409-3422
Author(s):  
Changping Li ◽  
Xiaofei Wang ◽  
Yaxian Xiao ◽  
Xuhan Sun ◽  
Jinbin Wang ◽  
...  

Abstract The Triticum/Aegilops complex includes hybrid species resulting from homoploid hybrid speciation and allopolyploid speciation. Sequential allotetra- and allohexaploidy events presumably result in two challenges for the hybrids, which involve 1) cytonuclear stoichiometric disruptions caused by combining two diverged nuclear genomes with the maternal inheritance of the cytoplasmic organellar donor; and 2) incompatibility of chimeric protein complexes with diverged subunits from nuclear and cytoplasmic genomes. Here, we describe coevolution of nuclear rbcS genes encoding the small subunits of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) and nuclear genes encoding plastid translocons, which mediate recognition and translocation of nuclear-encoded proteins into plastids, in allopolyploid wheat species. We demonstrate that intergenomic paternal-to-maternal gene conversion specifically occurred in the genic region of the homoeologous rbcS3 gene from the D-genome progenitor of wheat (abbreviated as rbcS3D) such that it encodes a maternal-like or B-subgenome-like SSU3D transit peptide in allohexaploid wheat but not in allotetraploid wheat. Divergent and limited interaction between SSU3D and the D-subgenomic TOC90D translocon subunit is implicated to underpin SSU3D targeting into the chloroplast of hexaploid wheat. This implicates early selection favoring individuals harboring optimal maternal-like organellar SSU3D targeting in hexaploid wheat. These data represent a novel dimension of cytonuclear evolution mediated by organellar targeting and transportation of nuclear proteins.


2020 ◽  
Vol 71 (12) ◽  
pp. 3653-3663 ◽  
Author(s):  
Kunyang Zhuang ◽  
Jieyu Wang ◽  
Baozhen Jiao ◽  
Chong Chen ◽  
Junjie Zhang ◽  
...  

Abstract Rubisco, which consists of eight large subunits (RBCLs) and eight small subunits (RBCSs), is a major photosynthetic enzyme that is sensitive to chilling stress. However, it is largely unclear how plants maintain high Rubisco content under low temperature conditions. Here, we report that tomato WHIRLY1 (SlWHY1) positively regulates the Rubisco level under chilling stress by directly binding to the promoter region of SlRbcS1, resulting in the activation of SlRbcS1 expression. SlRbcS1-overexpressing lines had higher Rubisco contents and were more resistant to chilling stress compared with the wild type. Quantitative real-time PCR analyses showed that, among the five RbcS genes, only SlRbcS1 expression is up-regulated by chilling treatment. These results indicate that SlWHIRLY1 specifically enhances the levels of SlRbcS1 and confers tolerance to chilling stress. The amino acid sequence of SlRBCS1 shows 92.67% identity with those of another two RBCS proteins and three residues are specifically found in SlRBCS1. However, mutation of these residues to alanine in SlRBCS1 does not influence its function during cold adaptation. Thus, we conclude that high levels of Rubisco, but not the specific residues in SlRBCS1, play important roles in tolerance to chilling stress in tomato.


2020 ◽  
Vol 21 (5) ◽  
pp. 1626 ◽  
Author(s):  
Mao Suganami ◽  
Yuji Suzuki ◽  
Eri Kondo ◽  
Shinji Nishida ◽  
So Konno ◽  
...  

It has been reported that overproduction of Rubisco activase (RCA) in rice (Oryza sativa L.) decreased Rubisco content, resulting in declining photosynthesis. We examined the effects of RCA levels on Rubisco content using transgenic rice with overexpressed or suppressed RCA under the control of different promoters of the RCA and Rubisco small subunit (RBCS) genes. All plants were grown hydroponically with different N concentrations (0.5, 2.0 and 8.0 mM-N). In RCA overproduced plants with > 2-fold RCA content (RCA-HI lines), a 10%–20% decrease in Rubisco content was observed at 0.5 and 2.0 mM-N. In contrast, at 8.0 mM-N, Rubisco content did not change in RCA-HI lines. Conversely, in plants with 50%–60% increased RCA content (RCA-MI lines), Rubisco levels remained unchanged, regardless of N concentration. Such effects on Rubisco content were independent of the promoter that was used. In plants with RCA suppression to < 10% of the wild-type RCA content, Rubisco levels were increased at 0.5 mM-N, but were unchanged at 2.0 and 8.0 mM-N. Thus, the effects of the changes in RCA levels on Rubisco content depended on N supply. Moreover, RCA overproduction was feasible without a decrease in Rubisco content, depending on the degree of RCA production.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 869 ◽  
Author(s):  
Yufei Zhai ◽  
Xiaqing Yu ◽  
Zaobing Zhu ◽  
Panqiao Wang ◽  
Ya Meng ◽  
...  

Allopolyploids are often faced with the challenge of maintaining well-coordination between nuclear and cytoplasmic genes inherited from different species. The synthetic allotetraploid Cucumis × hytivus is a useful model to explore cytonuclear coevolution. In this study, the sequences and expression of cytonuclear enzyme complex RuBisCO as well as its content and activity in C. × hytivus were compared to its parents to explore plastid–nuclear coevolution. The plastome-coded rbcL gene sequence was confirmed to be stable maternal inheritance, and parental copy of nuclear rbcS genes were both preserved in C. × hytivus. Thus, the maternal plastid may interact with the biparentally inherited rbcS alleles. The expression of the rbcS gene of C-homoeologs (paternal) was significantly higher than that of H-homoeologs (maternal) in C. × hytivus (HHCC). Protein interaction prediction analysis showed that the rbcL protein has stronger binding affinity to the paternal copy of rbcS protein than that of maternal copy in C. × hytivus, which might explain the transcriptional bias of the rbcS homoeologs. Moreover, both the activity and content of RuBisCO in C. × hytivus showed mid-parent heterosis. In summary, our results indicate a paternal transcriptional bias of the rbcS genes in C. × hytivus, and we found new nuclear–cytoplasmic combination may be one of the reasons for allopolyploids heterosis.


2015 ◽  
Vol 67 (2) ◽  
pp. 373-383
Author(s):  
Bo Wang ◽  
Su Yingjuan ◽  
Ting Wang

Rubisco small subunits (RBCS) are encoded by a nuclear rbcS multigene family in higher plants and green algae. However, owing to the lack of rbcS sequences in lycophytes, the characteristics of rbcS genes in lycophytes is unclear. Recently, the complete genome sequence of the lycophyte Selaginella moellendorffii provided the first insight into the rbcS gene family in lycophytes. To understand further the characteristics of rbcS genes in other Selaginella, the full length of rbcS genes (rbcS1 and rbcS2) from two other Selaginella species were isolated. Both rbcS1 and rbcS2 genes shared more than 97% identity among three Selaginella species. RBCS proteins from Selaginella contained the Pfam RBCS domain F00101, which was a major domain of other plant RBCS proteins. To explore the evolution of the rbcS gene family across Selaginella and other plants, we identified and performed comparative analysis of the rbcS gene family among 16 model plants based on a genome-wide analysis. The results showed that (i) two rbcS genes were obtained in Selaginella, which is the second fewest number of rbcS genes among the 16 representative plants; (ii) an expansion of rbcS genes occurred in the moss Physcomitrella patens; (iii) only RBCS proteins from angiosperms contained the Pfam PF12338 domains, and (iv) a pattern of concerted evolution existed in the rbcS gene family. Our study provides new insights into the evolution of the rbcS gene family in Selaginella and other plants.


2013 ◽  
Vol 31 (5) ◽  
pp. 1176-1183 ◽  
Author(s):  
Kumar Paritosh ◽  
Deepak Pental ◽  
Pradeep Kumar Burma

Sign in / Sign up

Export Citation Format

Share Document