scholarly journals Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing

2020 ◽  
Vol 117 (47) ◽  
pp. 29691-29701 ◽  
Author(s):  
Francesco Chemello ◽  
Zhaoning Wang ◽  
Hui Li ◽  
John R. McAnally ◽  
Ning Liu ◽  
...  

Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei.

2011 ◽  
Vol 110 (3) ◽  
pp. 601-609 ◽  
Author(s):  
Pooneh Bagher ◽  
Dongsheng Duan ◽  
Steven S. Segal

Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by mutations in the dystrophin gene. Little is known about how blood flow control is affected in arteriolar networks supplying dystrophic muscle. We tested the hypothesis that mdx mice, a murine model for DMD, exhibit defects in arteriolar vasomotor control. The cremaster muscle was prepared for intravital microscopy in pentobarbital sodium-anesthetized mdx and C57BL/10 control mice ( n ≥ 5 per group). Spontaneous vasomotor tone increased similarly with arteriolar branch order in both mdx and C57BL/10 mice [pooled values: first order (1A), 6%; second order (2A), 56%; and third order (3A), 61%] with no difference in maximal diameters between groups measured during equilibration with topical 10 μM sodium nitroprusside (pooled values: 1A, 70 ± 3 μm; 2A, 31 ± 3 μm; and 3A, 19 ± 3 μm). Concentration-response curves to acetylcholine (ACh) and norepinephrine added to the superfusion solution did not differ between mdx and C57BL/10 mice, nor did constriction to elevated (21%) oxygen. In response to local stimulation from a micropipette, conducted vasodilation to ACh and conducted vasoconstriction to KCl were also not different between groups; however, constriction decayed with distance ( P < 0.05) whereas dilation did not. Remarkably, arteriolar constriction to perivascular nerve stimulation (PNS) at 2, 4, and 8 Hz was reduced by ∼25–30% in mdx mice compared with C57BL/10 mice ( P < 0.05). With intact arteriolar reactivity to agonists, attenuated constriction to perivascular nerve stimulation indicates impaired neurovascular transmission in arterioles controlling blood flow in mdx mice.


Author(s):  
Vratko Himič ◽  
Kay E. Davies

AbstractDuchenne muscular dystrophy (DMD) is an X-linked progressive muscle-wasting disorder that is caused by a lack of functional dystrophin, a cytoplasmic protein necessary for the structural integrity of muscle. As variants in the dystrophin gene lead to a disruption of the reading frame, pharmacological treatments have only limited efficacy; there is currently no effective therapy and consequently, a significant unmet clinical need for DMD. Recently, novel genetic approaches have shown real promise in treating DMD, with advancements in the efficacy and tropism of exon skipping and surrogate gene therapy. CRISPR-Cas9 has the potential to be a ‘one-hit’ curative treatment in the coming decade. The current limitations of gene editing, such as off-target effects and immunogenicity, are in fact partly constraints of the delivery method itself, and thus research focus has shifted to improving the viral vector. In order to halt the loss of ambulation, early diagnosis and treatment will be pivotal. In an era where genetic sequencing is increasingly utilised in the clinic, genetic therapies will play a progressively central role in DMD therapy. This review delineates the relative merits of cutting-edge genetic approaches, as well as the challenges that still need to be overcome before they become clinically viable.


2019 ◽  
Vol 8 ◽  
pp. 204800401987958
Author(s):  
HR Spaulding ◽  
C Ballmann ◽  
JC Quindry ◽  
MB Hudson ◽  
JT Selsby

Background Duchenne muscular dystrophy is a muscle wasting disease caused by dystrophin gene mutations resulting in dysfunctional dystrophin protein. Autophagy, a proteolytic process, is impaired in dystrophic skeletal muscle though little is known about the effect of dystrophin deficiency on autophagy in cardiac muscle. We hypothesized that with disease progression autophagy would become increasingly dysfunctional based upon indirect autophagic markers. Methods Markers of autophagy were measured by western blot in 7-week-old and 17-month-old control (C57) and dystrophic (mdx) hearts. Results Counter to our hypothesis, markers of autophagy were similar between groups. Given these surprising results, two independent experiments were conducted using 14-month-old mdx mice or 10-month-old mdx/Utrn± mice, a more severe model of Duchenne muscular dystrophy. Data from these animals suggest increased autophagosome degradation. Conclusion Together these data suggest that autophagy is not impaired in the dystrophic myocardium as it is in dystrophic skeletal muscle and that disease progression and related injury is independent of autophagic dysfunction.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 648
Author(s):  
Andrea L. Reid ◽  
Matthew S. Alexander

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.


1970 ◽  
pp. 36-39
Author(s):  
M Robed Amin ◽  
Chowdhury Chironjib Borua ◽  
Kaji Shafiqul Alam ◽  
Fazle Rabbi Chowdhury ◽  
Rabiul Jahan Sarkar ◽  
...  

Progressive muscular weakness with deformity leading to crippled states develop due to musculoskeletal and neurological disorders. Sometimes it is difficult to differentiate between primary muscle disease and neurological disease. But there is some classical presentation of muscle diseases which have its own entity and thus can be clinically differentiated from neurological disorder especially spinal cord and motor neuron diseases. Muscular dystrophy is one of those disorder with distinct clinical features. Muscular dystrophy refers to a group of genetic, hereditary muscle diseases that cause progressive muscle weakness. Most types of MD are multi-system disorders with manifestations in body systems including skeletal system, the heart, gastrointestinal and nervous systems, endocrine glands, skin, eyes and other organs. Duchenne muscular dystrophy (DMD), is inherited in an X-linked recessive pattern, meaning that the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes, and is thus considered sex-linked. Males are therefore affected by X-linked recessive disorders much more often than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. Duchenne muscular dystrophy and Backers muscular dystrophy are caused by mutations of the gene for the dystrophin protein and lead to an overabundance of the enzyme creatine kinase. The dystrophin gene is the largest gene in humans. In this case series a family with three brothers suffering from Duchenne muscular dystrophy is described and review with literature was done.   doi:10.3329/jom.v10i3.2015 J Medicine 2009; 10 (Supplement 1): 36-39


2009 ◽  
Vol 11 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Atchara Tunteeratum ◽  
Rawiphan Witoonpanich ◽  
Suchart Phudhichareonrat ◽  
Jakris Eu-ahsunthornwattana ◽  
Sarinee Pingsuthiwong ◽  
...  

2013 ◽  
Vol 04 (02) ◽  
pp. 227-229 ◽  
Author(s):  
Lakshya J Basumatary ◽  
Marami Das ◽  
Munindra Goswami ◽  
Ashok K Kayal

ABSTRACTDuchenne muscular dystrophy (DMD) is an X‑linked recessive disorder that affects 1 in 3,500 males and is caused by mutations in the dystrophin gene. In this paper, we have reported DNA analysis of DMD patients by multiplex polymerase chain reaction (PCR) from various states of northeast India. Of the 69 clinically suspected patients of DMD, deletion was detected by multiplex PCR in 49 (71%) patients. Majority of the deletions (42/49, 85.7%) were located at distal hot spot region that encompasses exons 44-55 and 14.3% of the deletions were located at the proximal hot spot region (exons 2-19). In this study population, the deletion rate was 71% and was more frequent in the distal end exon.


Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 61 ◽  
Author(s):  
Josiane Joseph ◽  
Dong Cho ◽  
Jason Doles

Duchenne muscular dystrophy (DMD) is a musculoskeletal disorder that causes severe morbidity and reduced lifespan. Individuals with DMD have an X-linked mutation that impairs their ability to produce functional dystrophin protein in muscle. No cure exists for this disease and the few therapies that are available do not dramatically delay disease progression. Thus, there is a need to better understand the mechanisms underlying DMD which may ultimately lead to improved treatment options. The muscular dystrophy (MDX) mouse model is frequently used to explore DMD disease traits. Though some studies of metabolism in dystrophic mice exist, few have characterized metabolic profiles of supporting cells in the diseased environment. Using nontargeted metabolomics we characterized metabolic alterations in muscle satellite cells (SCs) and serum of MDX mice. Additionally, live-cell imaging revealed MDX-derived adipose progenitor cell (APC) defects. Finally, metabolomic studies revealed a striking elevation of acylcarnitines in MDX APCs, which we show can inhibit APC proliferation. Together, these studies highlight widespread metabolic alterations in multiple progenitor cell types and serum from MDX mice and implicate dystrophy-associated metabolite imbalances in APCs as a potential contributor to adipose tissue disequilibrium in DMD.


2019 ◽  
Vol 28 (16) ◽  
pp. 2686-2695 ◽  
Author(s):  
Pamela Barraza-Flores ◽  
Tatiana M Fontelonga ◽  
Ryan D Wuebbles ◽  
Hailey J Hermann ◽  
Andreia M Nunes ◽  
...  

Abstract Duchenne muscular dystrophy (DMD) is a devastating X-linked disease affecting ~1 in 5000 males. DMD patients exhibit progressive muscle degeneration and weakness, leading to loss of ambulation and premature death from cardiopulmonary failure. We previously reported that mouse Laminin-111 (msLam-111) protein could reduce muscle pathology and improve muscle function in the mdx mouse model for DMD. In this study, we examined the ability of msLam-111 to prevent muscle disease progression in the golden retriever muscular dystrophy (GRMD) dog model of DMD. The msLam-111 protein was injected into the cranial tibial muscle compartment of GRMD dogs and muscle strength and pathology were assessed. The results showed that msLam-111 treatment increased muscle fiber regeneration and repair with improved muscle strength and reduced muscle fibrosis in the GRMD model. Together, these findings support the idea that Laminin-111 could serve as a novel protein therapy for the treatment of DMD.


Sign in / Sign up

Export Citation Format

Share Document