scholarly journals The added value of satellite observations of methane forunderstanding the contemporary methane budget

Author(s):  
Paul I. Palmer ◽  
Liang Feng ◽  
Mark F. Lunt ◽  
Robert J. Parker ◽  
Hartmut Bösch ◽  
...  

Surface observations have recorded large and incompletely understood changes to atmospheric methane (CH 4 ) this century. However, their ability to reveal the responsible surface sources and sinks is limited by their geographical distribution, which is biased towards the northern midlatitudes. Data from Earth-orbiting satellites designed specifically to measure atmospheric CH 4 have been available since 2009 with the launch of the Japanese Greenhouse gases Observing SATellite (GOSAT). We assess the added value of GOSAT to data collected by the US National Oceanic and Atmospheric Administration (NOAA), which have been the lynchpin for knowledge about atmospheric CH 4 since the 1980s. To achieve that we use the GEOS-Chem atmospheric chemistry transport model and an inverse method to infer a posteriori flux estimates from the NOAA and GOSAT data using common a priori emission inventories. We find the main benefit of GOSAT data is from its additional coverage over the tropics where we report large increases since the 2014/2016 El Niño, driven by biomass burning, biogenic emissions and energy production. We use data from the European TROPOspheric Monitoring Instrument to show how better spatial coverage and resolution measurements allow us to quantify previously unattainable diffuse sources of CH 4 , thereby opening up a new research frontier. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 1)’.

2018 ◽  
Vol 11 (8) ◽  
pp. 3391-3407 ◽  
Author(s):  
Zacharias Marinou Nikolaou ◽  
Jyh-Yuan Chen ◽  
Yiannis Proestos ◽  
Jos Lelieveld ◽  
Rolf Sander

Abstract. Chemical mechanism reduction is common practice in combustion research for accelerating numerical simulations; however, there have been limited applications of this practice in atmospheric chemistry. In this study, we employ a powerful reduction method in order to produce a skeletal mechanism of an atmospheric chemistry code that is commonly used in air quality and climate modelling. The skeletal mechanism is developed using input data from a model scenario. Its performance is then evaluated both a priori against the model scenario results and a posteriori by implementing the skeletal mechanism in a chemistry transport model, namely the Weather Research and Forecasting code with Chemistry. Preliminary results, indicate a substantial increase in computational speed-up for both cases, with a minimal loss of accuracy with regards to the simulated spatio-temporal mixing ratio of the target species, which was selected to be ozone.


2017 ◽  
Vol 17 (11) ◽  
pp. 6663-6678 ◽  
Author(s):  
Shreeya Verma ◽  
Julia Marshall ◽  
Mark Parrington ◽  
Anna Agustí-Panareda ◽  
Sebastien Massart ◽  
...  

Abstract. Airborne observations of greenhouse gases are a very useful reference for validation of satellite-based column-averaged dry air mole fraction data. However, since the aircraft data are available only up to about 9–13 km altitude, these profiles do not fully represent the depth of the atmosphere observed by satellites and therefore need to be extended synthetically into the stratosphere. In the near future, observations of CO2 and CH4 made from passenger aircraft are expected to be available through the In-Service Aircraft for a Global Observing System (IAGOS) project. In this study, we analyse three different data sources that are available for the stratospheric extension of aircraft profiles by comparing the error introduced by each of them into the total column and provide recommendations regarding the best approach. First, we analyse CH4 fields from two different models of atmospheric composition – the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System for Composition (C-IFS) and the TOMCAT/SLIMCAT 3-D chemical transport model. Secondly, we consider scenarios that simulate the effect of using CH4 climatologies such as those based on balloons or satellite limb soundings. Thirdly, we assess the impact of using a priori profiles used in the satellite retrievals for the stratospheric part of the total column. We find that the models considered in this study have a better estimation of the stratospheric CH4 as compared to the climatology-based data and the satellite a priori profiles. Both the C-IFS and TOMCAT models have a bias of about −9 ppb at the locations where tropospheric vertical profiles will be measured by IAGOS. The C-IFS model, however, has a lower random error (6.5 ppb) than TOMCAT (12.8 ppb). These values are well within the minimum desired accuracy and precision of satellite total column XCH4 retrievals (10 and 34 ppb, respectively). In comparison, the a priori profile from the University of Leicester Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH4 retrieval and climatology-based data introduce larger random errors in the total column, being limited in spatial coverage and temporal variability. Furthermore, we find that the bias in the models varies with latitude and season. Therefore, applying appropriate bias correction to the model fields before using them for profile extension is expected to further decrease the error contributed by the stratospheric part of the profile to the total column.


2014 ◽  
Vol 7 (2) ◽  
pp. 1645-1689
Author(s):  
E. Hache ◽  
J.-L. Attié ◽  
C. Tourneur ◽  
P. Ricaud ◽  
L. Coret ◽  
...  

Abstract. Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0–1 km column). We consider one week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0–1 km ozone column during the daytime especially over land.


2010 ◽  
Vol 10 (20) ◽  
pp. 9981-9992 ◽  
Author(s):  
S. Houweling ◽  
I. Aben ◽  
F.-M. Breon ◽  
F. Chevallier ◽  
N. Deutscher ◽  
...  

Abstract. This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by σ=0.5 ppm over the continents and σ=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transport.


2014 ◽  
Vol 14 (1) ◽  
pp. 267-282 ◽  
Author(s):  
A. T. Brown ◽  
M. P. Chipperfield ◽  
N. A. D. Richards ◽  
C. Boone ◽  
P. F. Bernath

Abstract. Fluorine-containing species can be extremely effective atmospheric greenhouse gases. We present fluorine budgets using organic and inorganic species retrieved by the ACE-FTS satellite instrument supplemented with output from the SLIMCAT 3-D chemical transport model. The budgets are calculated between 2004 and 2009 for a number of latitude bands: 70–30° N, 30–00° N, 00° N–30° S, and 30–70° S. At lower altitudes total fluorine profiles are dominated by the contribution from CFC-12, up to an altitude of 20 km in the extra-tropics and 29 km in the tropics; above these altitudes the profiles are dominated by hydrogen fluoride (HF). Our data show that total fluorine profiles at all locations have a negative slope with altitude, providing evidence that overall fluorine emissions (measured by their F content) have been increasing with time. Total stratospheric fluorine is increasing at a similar rate in the tropics: 32.5 ± 4.9 ppt yr−1 (1.31 ± 0.20% per year) in the Northern Hemisphere (NH) and 29.8 ± 5.3 ppt yr−1 (1.21 ± 0.22% per year) in the Southern Hemisphere (SH). Extra-tropical total stratospheric fluorine is also increasing at a similar rate in both the NH and SH: 28.3 ± 2.7 ppt per year (1.12 ± 0.11% per year) in the NH and 24.3 ± 3.1 ppt per year (0.96 ± 0.12% per year) in the SH. The calculation of radiative efficiency-weighted total fluorine allows the changes in radiative forcing between 2004 and 2009 to be calculated. These results show an increase in radiative forcing of between 0.23 ± 0.11% per year and 0.45 ± 0.11% per year, due to the increase in fluorine-containing species during this time. The decreasing trends in the mixing ratios of halons and chlorofluorocarbons (CFCs), due to their prohibition under the Montreal Protocol, have suppressed an increase in total fluorine caused by increasing mixing ratios of hydrofluorocarbons (HFCs). This has reduced the impact of fluorine-containing species on global warming.


2004 ◽  
Vol 4 (11/12) ◽  
pp. 2561-2580 ◽  
Author(s):  
T. M. Butler ◽  
I. Simmonds ◽  
P. J. Rayner

Abstract. A mass balance inverse modelling procedure is applied with a time-dependent methane concentration boundary condition and a chemical transport model to relate observed changes in the surface distribution of methane mixing ratios during the 1990s to changes in its surface sources. The model reproduces essential features of the global methane cycle, such as the latitudinal distribution and seasonal cycle of fluxes, without using a priori knowledge of methane fluxes. A detailed description of the temporal and spatial variability of the fluxes diagnosed by the inverse procedure is presented, and compared with previously hypothesised changes in the methane budget, and previous inverse modelling studies. The sensitivity of the inverse results to the forcing data supplied by surface measurements of methane from the NOAA CMDL cooperative air sampling network is also examined. This work serves as an important starting point for future inverse modelling work examining changes in both the source and sink terms in the methane budget together.


2014 ◽  
Vol 14 (12) ◽  
pp. 18127-18180 ◽  
Author(s):  
J. J. Harrison ◽  
M. P. Chipperfield ◽  
A. Dudhia ◽  
S. Cai ◽  
S. Dhomse ◽  
...  

Abstract. The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). These molecules slowly degrade in the atmosphere leading to the formation of HF, COF2, and COClF, which are the main fluorine-containing species in the stratosphere. Ultimately both COF2 and COClF further degrade to form HF, an almost permanent reservoir of stratospheric fluorine due to its extreme stability. Carbonyl fluoride (COF2) is the second most abundant stratospheric "inorganic" fluorine reservoir with main sources being the atmospheric degradation of CFC-12 (CCl2F2), HCFC-22 (CHF2Cl), and CFC-113 (CF2ClCFCl2). This work reports the first global distributions of carbonyl fluoride in the Earth's atmosphere using infrared satellite remote-sensing measurements by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), which has been recording atmospheric spectra since 2004, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, which has recorded thermal emission atmospheric spectra between 2002 and 2012. The observations reveal a high degree of seasonal and latitudinal variability over the course of a year. These have been compared with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the observations agree well with each other and compare well with SLIMCAT, although MIPAS is biased high by as much as ~30%. Between January 2004 and September 2010 COF2 grew most rapidly at altitudes above ~25 km in the southern latitudes and at altitudes below ~25 km in the northern latitudes, whereas it declined most rapidly in the tropics. These variations are attributed to changes in stratospheric dynamics over the observation period. The overall COF2 global trend over this period is calculated as 0.85 ± 0.34 % year−1 (MIPAS), 0.30 ± 0.44% year−1 (ACE), and 0.88% year−1 (SLIMCAT).


2019 ◽  
Author(s):  
Jian He ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
Ed Dlugokencky ◽  
Kirk Thoning

Abstract. Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and variability in methane abundance over the recent past is therefore critical for building confidence in projections of future methane levels. In this work, the representation of methane in the atmospheric chemistry model AM4.1 is improved by optimizing total methane emissions (to an annual mean of 576 ± 32 Tg yr−1) to match surface observations over 1980–2017. The simulations with optimized global emissions are in general able to capture the observed global trend, variability, seasonal cycle, and latitudinal gradient of methane. Simulations with different emission adjustments suggest that increases in methane sources (mainly from energy and waste sectors) balanced by increases in methane sinks (mainly due to increases in OH levels) lead to methane stabilization (with an imbalance of 5 Tg yr−1) during 1999–2006, and that increases in methane sources combined with little change in sinks (despite small decreases in OH levels) during 2007–2012 lead to renewed methane growth (with an imbalance of 14 Tg yr−1 for 2007–2017). Compared to 1999–2006, both methane emissions and sinks are greater (by 31 Tg yr−1 and 22 Tg yr−1, respectively) during 2007–2017. Our results also indicate that the energy sector is more likely a major contributor to the methane renewed growth after 2006 than wetland, as increases in wetland emissions alone are not able to explain the renewed methane growth with constant anthropogenic emissions. In addition, a significant increase in wetland emissions would be required starting in 2006, if anthropogenic emissions declined, for wetland emissions to drive renewed growth in methane, which is a less likely scenario. Simulations with varying OH levels indicate that 1 % change in OH levels could lead to an annual mean of ~ 4 Tg yr−1 difference in the optimized emissions and 0.08 year difference in the estimated tropospheric methane lifetime. Continued increases in methane emissions along with decreases in tropospheric OH concentrations during 2008–2015 prolong methane lifetime and therefore amplify the response of methane concentrations to emission changes. Uncertainties still exist in the partitioning of emissions among individual sources and regions.


2020 ◽  
Author(s):  
Yi Yin ◽  
Frederic Chevallier ◽  
Philippe Ciais ◽  
Philippe Bousquet ◽  
Marielle Saunois ◽  
...  

Abstract. After stagnating in the early 2000s, the atmospheric methane growth rate has been positive since 2007 with a significant acceleration starting in 2014. While causes for previous growth rate variations are still not well determined, this recent increase can be studied with dense surface and satellite observations. Here, we use an ensemble of six multi-tracer atmospheric inversions that have the capacity to assimilate the major tracers in the methane oxidation chain – namely methane, formaldehyde, and carbon monoxide – to simultaneously optimize both the methane sources and sinks at each model grid. We show that the recent surge of the atmospheric growth rate between 2010–2013 and 2014–2017 is most likely explained by an increase of global CH4 emissions by 17.5 ± 1.5 Tg yr−1 (mean ± 1σ), while variations in CH4 sinks remained small. The inferred emission increase is consistently supported by both surface and satellite observations, with leading contributions from the tropics wetlands (~ 35 %) and anthropogenic emissions in China (~ 20 %). Such a high consecutive atmospheric growth rate has not been observed since the 1980s and corresponds to unprecedented global total CH4 emissions.


2018 ◽  
Author(s):  
Peter H. Zimmermann ◽  
Carl A. M. Brenninkmeijer ◽  
Andrea Pozzer ◽  
Patrick Jöckel ◽  
Andreas Zahn ◽  
...  

Abstract. The global budget and trends of atmospheric methane (CH4) have been simulated with the EMAC atmospheric chemistry – general circulation model for the period 1997 through 2014. Observations from AGAGE and NOAA surface stations and intercontinental CARIBIC flights indicate a transient period of declining methane increase during 1997 through 1999, followed by seven years of stagnation and a sudden resumed increase after 2006. Starting the simulation with a global methane distribution, scaled to match the station measurements in January 1997 and using inter-annually constant CH4 sources from eleven categories together with photochemical and soil sinks, the model reproduces the observations during the transient and constant period from 1997 through 2006 in magnitude as well as seasonal and synoptic variability. The atmospheric CH4 calculations in our model setup are linearly dependent on the source strengths, allowing source segregated simulation of eleven biogenic and fossil emission categories (tagging), with the aim to analyze global observations and derive the source specific CH4 steady state lifetimes. Moreover, tagging enables a-posteriori rescaling of individual emissions with proportional effects on the corresponding inventories and offers a method to approximate the station measurements in terms of lowest RMS. Enhancing the a priori biogenic tropical wetland emissions by ~ 29 Tg/y, compensated by a reduction of anthropogenic fossil CH4 emissions, the all-station mean dry air mole fraction of 1792 nmol/mol could be simulated within a RMS of 0.37 %. The coefficient of determination R2 = 0.87 indicates good agreement with observed variability and the calculated 2000–2005 average interhemispheric methane difference between selected NH and SH stations of 119 nmol/mol matches the observations. The CH4 samples from 95 intercontinental CARIBIC flights for the period 1997–2006 are also accurately simulated by the model, with a 2000–2006 average CH4 mixing ratio of 1786 nmol/mol, and 65 % of the measured variability being captured. This includes tropospheric and stratospheric data. To explain the growth of CH4 from 2007 through 2013 in term of sources, an emission increase of 28.3 Tg/y CH4 is needed. We explore the contributions of two potential causes, one representing natural emissions from wetlands in the tropics and the other anthropogenic shale gas production emissions in North America. A 62.6 % tropical wetland contribution and of 37.4 % by shale gas emissions optimally fit the trend, and simulates CH4 from 2007–2013 with an RMS of 7.1 nmol/mol (0.39 %). The coefficient of determination of R2 = 0.91 indicates even higher significance than before 2006. The 4287 samples collected during 232 CARIBIC flights after 2007 are simulated with an RMS of 1.3 % and R2 = 0.8, indicating that the model reproduces the seasonal and synoptic variability of CH4 in the upper troposphere and lower stratosphere.


Sign in / Sign up

Export Citation Format

Share Document