atropine treatment
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 0)

Children ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 1054
Author(s):  
Hui-Ying Kuo ◽  
Ching-Hsiu Ke ◽  
Shyan-Tarng Chen ◽  
Han-Yin Sun

Taiwan is commonly noted for its high prevalence of myopia, as well as a long history of more than 20 years of using atropine to control myopia. However, the clinical implications are rarely discussed. This is a cross-sectional study investigating the influence of topical atropine instillation on ocular physiology, visual function, and visual discomfort in children. Aged 7 to 12 years, 212 schoolchildren were recruited and divided into the atropine group and the non-atropine group. Physiological characteristics such as pupil size and intraocular pressure were measured, and a variety of visual functions was also evaluated. A questionnaire was used to investigate the side effects and visual complaints caused by atropine treatment. There was a significant difference in pupil size (OD: 5.40 ± 0.90 vs. 6.60 ± 1.01 mm; OS: 5.42 ± 0.87 vs. 6.64 ± 1.00 mm, p < 0.001) between the two groups. Reductions in near visual acuity, accommodation, convergence ability, and stereopsis were observed in the atropine group. The horizontal pupil diameter enlarged, and visual functions were greatly affected after administration of topical atropine. The changes in visual function during atropine therapy need to be carefully monitored by clinicians, while patient compliance is usually the key to success.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Po-Hsiang Kao ◽  
Lan-Hsin Chuang ◽  
Chi-Chun Lai ◽  
Shin-Yi Chen ◽  
Ken-Kuo Lin ◽  
...  

AbstractThe aim of the study is to determine the effects of monocular 0.125% atropine daily treatment on the longer axial length (AL) eyes in children with pediatric anisometropia. This was a retrospective cohort study. The charts of children with anisometropia (aged 6–15 years) who had a > 0.2-mm difference in AL between the two eyes were reviewed. Children who received monocular treatment of 0.125% atropine in the eye with longer AL were included for final analysis. The main outcome measure was the difference in AL between the two eyes after treatment. Regression analysis was used to model the changes in AL according to the time of treatment in both eyes. Finally, forty eyes in 20 patients (mean age 10.2 years) were included in the analyses. During the treatment period, AL was controlled in the treated eyes (p = 0.389) but elongated significantly in the untreated eyes (p < 0.001). The difference in AL between the treated and untreated eyes decreased from 0.57 to 0.22 mm (p < 0.001) after the 1-year treatment period. In the regression model, the best fit for the relationship between changes in AL and time during the treatment period in the treated eyes was the quadratic regression model with a concave function. In conclusion, these data suggest that 0.125% atropine daily is an effective treatment to reduce the interocular difference of AL in eyes with axial anisometropia. This pilot study provides useful information for future prospective and larger studies of atropine for the treatment of pediatric axial anisometropia.


Author(s):  
Maria Shirvani ◽  
Babak Sayad ◽  
Lida Shojaei ◽  
Azadeh Amini ◽  
Foroud Shahbazi

Recently, remdesivir was approved by the United States Food and Drug Administration for patients with Coronavirus disease 2019 (COVID-19). We herein describe 3 patients with COVID-19 who showed significant bradycardia and QTc prolongation after remdesivir administration. Bradycardia did not respond to atropine treatment in 2 of the patients, one of whom received theophylline and the other required a temporary pacemaker. Fortunately, the patients’ heart rate and rhythm returned to normal after the discontinuation of remdesivir, albeit it lengthened their hospital stays. Careful monitoring during remdesivir infusion may decrease the risk of adverse cardiovascular side effects.


2021 ◽  
Vol 10 (17) ◽  
pp. 3766
Author(s):  
Hou-Ren Tsai ◽  
Tai-Li Chen ◽  
Jen-Hung Wang ◽  
Huei-Kai Huang ◽  
Cheng-Jen Chiu

Several conflicting results regarding the efficacy of 0.01% atropine in slowing axial elongation remain in doubt. To solve this issue and evaluate the safety of 0.01% atropine, we conducted a systematic review and meta-analysis with the latest evidence. The review included a total of 1178 participants (myopic children). The efficacy outcomes were the mean annual progression in standardized equivalent refraction (SER) and axial length (AL). The safety outcomes included mean annual change in accommodative amplitude, photopic and mesopic pupil diameter. The results demonstrated that 0.01% atropine significantly retarded SER progression compared with the controls (weighted mean difference [WMD], 0.28 diopter (D) per year; 95% confidence interval (CI) = 0.17, 0.38; p < 0.01), and axial elongation (WMD, −0.06 mm; 95% CI = −0.09, −0.03; p < 0.01) during the 1-year period. Patients receiving 0.01% atropine showed no significant changes in accommodative amplitude (WMD, −0.45 D; 95% CI = −1.80, 0.90; p = 0.51) but showed dilated photopic pupil diameter (WMD, 0.35 mm; 95% CI = 0.02, 0.68; p = 0.04) and mesopic pupil diameter (WMD, 0.20 mm; 95% CI = 0.08, 0.32; p < 0.01). In the subgroup analysis of SER progression, myopic children with lower baseline refraction (>−3 D) and older age (>10-year-old) obtained better responses with 0.01% atropine treatment. Furthermore, the European and multi-ethnicity groups showed greater effect than the Asian groups. In conclusion, 0.01% atropine had favorable efficacy and adequate safety for childhood myopia over a 1-year period.


2021 ◽  
pp. 101475
Author(s):  
Nir Erdinest ◽  
Naomi London ◽  
Nadav Levinger ◽  
Itay Lavy ◽  
Eran Pras ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aicun Fu ◽  
Fiona Stapleton ◽  
Li Wei ◽  
Weiqun Wang ◽  
Bingxin Zhao ◽  
...  

AbstractThree hundred and twenty-eight myopic children, randomized to use either 0.01% (N = 166) or 0.02% (N = 162) atropine were enrolled in this study. Gender, age, body mass index(BMI), parental myopia status, atropine concentration used, pupil diameter, amplitude of accommodation, spherical equivalent refractive error (SER), anterior chamber depth (ACD) and axial length (AL) were collected at baseline and 1 year after using atropine. Rapid AL elongation was defined as > 0.36 mm growth per year. Univariate analyses showed that children with rapid AL elongation tend to be younger, have a smaller BMI, use of 0.01% atropine, narrow ACD, lower SER, shorter AL, smaller change in pupil diameter between 1 year and baseline (all P < 0.05). Multivariate logistic regression analyses confirmed that rapid AL elongation was associated with children that were younger at baseline (P < 0.0001), use of 0.01% atropine (P = 0.04), a shorter baseline AL (P = 0.03) and a smaller change in pupil diameter between 1 year and baseline (P = 0.04). Younger children with shorter AL at baseline, less change in their pupil diameter with atropine treatment and using the lower of the two atropine concentrations may undergo rapid AL elongation over a 12 months myopia control treatment period.


Author(s):  
Lutz Joachimsen ◽  
Navid Farassat ◽  
Tim Bleul ◽  
Daniel Böhringer ◽  
Wolf A. Lagrèze ◽  
...  

Abstract Purpose Based on findings of the Asian low-concentration atropine for myopia progression study, a concentration of 0.05% has been proposed as a good compromise between safety and efficacy for myopia control. However, no data on side effects have been published so far in Caucasian children receiving this dose. Methods Prior to commencement of bilateral atropine treatment with 0.05% atropine, 19 myopic children aged 5 to 15 years were treated in only one eye at bedtime leaving the other eye as a control. Pupil size, accommodation amplitude and near visual acuity were measured at 10:00 a.m. the next day and compared to the untreated contralateral control eye. The results were then compared to a cohort of 18 children whose treatment with 0.01% atropine commenced in a similar fashion. Results Twelve children (63%) reported visual impairment or reading difficulties. Anisocoria was 2.9 ± 1.1 mm. In comparison, 0.01% atropine led to a significantly less anisocoria of 0.8 ± 0.7 mm (p < 0.0001). Accommodation was decreased by − 4.2 ± 3.8 D in 0.05% atropine treated eyes, whereas 0.01% atropine induced hypoaccommodation of − 0.05 ± 2.5 D (p < 0.01). Near visual acuity was not significantly reduced in eyes treated with 0.05% atropine compared to 0.01% atropine (p = 0.26). Conclusion Compared to 0.01%, our data indicate stronger more relevant side effects of 0.05% topical atropine in young Caucasian children with progressive myopia as recently reported in Asian children, potentially compromising acceptance and compliance.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qingyu Li ◽  
Jianxin Pang ◽  
Yang Deng ◽  
Shaochong Zhang ◽  
Yong Wang ◽  
...  

Background: Phenylephrine and atropine can cause serious adverse effects when applied in combination. We investigated the effect of phenylephrine eye drops combined with intravenous atropine on the cardiovascular system in patients under general anesthesia undergoing intraocular surgery.Methods: The effects of the drugs were observed through clinical study. Thirteen patients undergoing intraocular surgery under general anesthesia were observed in this study; all were injected intravenously with atropine due to the oculocardiac reflex during surgery. To study the combination of drugs, an in vivo study was performed on rats. Seventy-two standard deviation rats that received phenylephrine eye drops and intravenous atropine treatment under general anesthesia were assessed, of which 18 treated with these drugs simultaneously were administered normal saline, neostigmine or esmolol. Blood pressure and heart rate were recorded and analyzed.Findings: The age of the patients ranged from seven to 14 years old with an average age of 10.7 years old, and 11 patients were male. In patients, 5% phenylephrine eye drops combined with intravenous atropine led to a significant heart rate increase and the increase lasted 20 min. The significant increase in diastolic blood pressure and systolic blood pressure lasted for 15 and 25 min, respectively. From five to 25 min after intravenous atropine treatment, the systolic blood pressure and diastolic blood pressure were both more than 20% higher than that at baseline. In rats, the changes in blood pressure and heart rate were independent of the phenylephrine and atropine administration sequence but were related to the administration time interval. The neostigmine group showed a significant decrease in blood pressure after the increase from the administration of phenylephrine and atropine.Interpretation: Phenylephrine eye drops combined with intravenous atropine have obvious cardiovascular effects that can be reversed by neostigmine. This drug combination should be used carefully for ophthalmic surgery, especially in patients with cardio-cerebrovascular diseases.


2020 ◽  
Author(s):  
Aicun Fu ◽  
Fiona Stapleton ◽  
Li Wei ◽  
Weiqun Wang ◽  
Bingxin Zhao ◽  
...  

Abstract Three hundred and twenty-eight myopic children, randomized to use either 0.01% (N=166) or 0.02% (N=162) atropine were enrolled in this study. Gender, age, body mass index(BMI), parental myopia status, atropine concentration used, pupil diameter, amplitude of accommodation, spherical equivalent refractive error (SER), anterior chamber depth (ACD) and axial length (AL) were collected at baseline and 1 year after using atropine. Rapid AL elongation was defined as >0.36 mm growth per year. Univariate analyses showed that children with rapid AL elongation tend to be younger, have a smaller BMI, use of 0.01% atropine, narrow ACD, lower SER, shorter AL, smaller change in pupil diameter between 1 year and baseline (all P < 0.05). Multivariate regression analyses confirmed that rapid AL elongation was associated with children that were younger at baseline (P < 0.0001), use of 0.01% atropine (P = 0.04), a shorter baseline AL (P = 0.03) and a smaller change in pupil diameter between 1 year and baseline (P = 0.04). Younger children with shorter AL at baseline, less change in their pupil diameter with atropine treatment and using the lower of the two atropine concentrations may undergo rapid AL elongation over a 12 months myopia control treatment period.


2020 ◽  
Vol 61 (14) ◽  
pp. 15
Author(s):  
Luyao Ye ◽  
Ya Shi ◽  
Yao Yin ◽  
Shanshan Li ◽  
Jiangnan He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document