scholarly journals Increasing of the Accuracy of Signalsʼ Time Parameters Measuring Using Double Pulse Trains

2021 ◽  
Vol 12 (4) ◽  
pp. 323-331
Author(s):  
A. V. Isaev ◽  
U. V. Suchodolov ◽  
A. S. Sushko ◽  
A. A. Sheinikau

In modern diagnostics, much attention is paid to measuring of time parameters, as well as their change over time. The purpose of this work is to develop a method for measuring of time intervals which made it possible to increase the measurement accuracy by reducing errors associated with the instability of main parameters of the pulse signal.In the most of approaches used, the error associated with the instability of main parameters of signals under study is not enough taken into account. As an alternative, a spectral method is proposed in which the measurement of time intervals, as well as their changes, is performed based on the analysis of pulse sequences formed on the basis of characteristic points of the measured signal. For this a double pulse sequence was considered, an equation for the amplitudes of its spectral components was obtained, and in accordance with this it was determined that the delay time between double pulses is the most informative parameter.Using the Mathcad software, an analysis of the sensitivity regions was carried out for the change in the main parameters of the pulse sequence, namely the repetition rate, as the main destabilizing factor.As a result of the implementation of the developed technique, a structural diagram of the measuring system is proposed and an analysis of the measurement error associated with the instability of the main parameters of the pulse sequence is carried out. This error is estimated to be less than 0.01 %.The considered method makes it possible to increase the accuracy of measuring time intervals due to the almost complete elimination of the influence of the instability of the reference frequency and the amplitude of the generated pulses which is unattainable with modern hardware, including digital signal processing. 

2020 ◽  
Vol 1 (4) ◽  
pp. 229-238
Author(s):  
Devi Munandar ◽  
Sudradjat Supian ◽  
Subiyanto Subiyanto

The influence of social media in disseminating information, especially during the COVID-19 pandemic, can be observed with time interval, so that the probability of number of tweets discussed by netizens on social media can be observed. The nonhomogeneous Poisson process (NHPP) is a Poisson process dependent on time parameters and the exponential distribution having unequal parameter values and, independently of each other. The probability of no occurrence an event in the initial state is one and the probability of an event in initial state is zero. Using of non-homogeneous Poisson in this paper aims to predict and count the number of tweet posts with the keyword coronavirus, COVID-19 with set time intervals every day. Posting of tweets from one time each day to the next do not affect each other and the number of tweets is not the same. The dataset used in this study is crawling of COVID-19 tweets three times a day with duration of 20 minutes each crawled for 13 days or 39 time intervals. The result of this study obtained predictions and calculated for the probability of the number of tweets for the tendency of netizens to post on the situation of the COVID-19 pandemic.


2001 ◽  
Vol 4 (2) ◽  
pp. 75-91 ◽  
Author(s):  
Xiaotong Wang ◽  
Chih-Chen Chang ◽  
Lichu Fan

The recent advances in detecting and locating damage in bridges by different kinds of non-destructive testing and evaluation (NDT&E) methods are reviewed. From the application point of view, classifications for general bridge components and their damage types are presented. The relationships between damage, bridge components, and NDT&E techniques are summarized. Many useful WEB sources of NDT&E techniques in bridge damage detection are given. It is concluded that: (1) vibration-based damage detection methods are successful to a certain extent, especially when the overall damage is significant and, low frequency vibration can identify those areas where more detailed local inspection should be concentrated; (2) robust identification techniques that are able to locate damage based on realistic measured data sets still seem a long way from reality, and, basic research is still necessary in the mean time; (3) the rapid development of computer technology and digital signal processing (DSP) techniques greatly impacts upon the conventional NDT techniques, especially in control data processing and data displaying, as well as in simulation and modeling; (4) most of the NDT&E techniques introduced in this paper have their own practical commercial systems, but the effort required for combining the theoretical, experimental and engineering achievements, is still a challenging task when establishing the relationship between the unknown quantities and the measured signal parameters and specialised instruments have shown great advantages for doing some things more effectively than general ones; (5) in bridge damage detection, a problem usually requires the application of different NDT&E techniques; two or more independent techniques are needed to enable confidence in the results.


2020 ◽  
Vol 9 (8) ◽  
pp. 205846012094924 ◽  
Author(s):  
Akitoshi Inoue ◽  
Akira Furukawa ◽  
Norihisa Nitta ◽  
Kai Takaki ◽  
Shinichi Ohta ◽  
...  

Background Magnetic resonance imaging (MRI) is widely used to diagnose acute abdominal pain; however, it remains unclear which pulse sequence has priority in acute abdominal pain. Purpose To investigate the diagnostic accuracy of MRI and to assess the conspicuity of each pulse sequence for the diagnosis of acute abdominal pain due to gastrointestinal diseases Material and Methods We retrospectively enrolled 60 patients with acute abdominal pain who underwent MRI for axial and coronal T2-weighted (T2W) imaging, fat-suppressed (FS)-T2W imaging, and true-fast imaging with steady-state precession (True-FISP) and axial T1-weighted (T1W) imaging and investigated the diagnosis with endoscopy, surgery, histopathology, computed tomography, and clinical follow-up as standard references. Two radiologists determined the diagnosis with MRI and rated scores of the respective sequences in assessing intraluminal, intramural, and extramural abnormality using a 5-point scale after one month. Diagnostic accuracy was calculated and scores were compared by Wilcoxon-signed rank test with Bonferroni correction. Results Diagnostic accuracy was 90.0% and 93.3% for readers 1 and 2, respectively. Regarding intraluminal abnormality, T2W, FS-T2W, and True-FISP imaging were superior to T1W imaging in both readers. FS-T2W imaging was superior to True-FISP in reader 2 ( P < 0.0083). For intramural findings, there was no significant difference in reader 1, whereas T2W, FS-T2W, and True-FISP imaging were superior to T1W imaging in reader 2 ( P < 0.0083). For extramural findings, FS-T2W imaging was superior to T2W, T1W, and True-FISP imaging in both readers ( P < 0.0083). Conclusion T2W and FS-T2W imaging are pivotal pulse sequences and should be obtained before T1W and True-FISP imaging.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Morgenstern ◽  
B Mikolich ◽  
D Morgenstern ◽  
J R Mikolich

Abstract Background The Lake Louise Criteria for the diagnosis of myocarditis by cardiac MRI (CMR) was published in 2009 (JACC April 2009; 53(17): 1475–1487) utilizing T2 STIR, “early” gadolinium enhancement (EGE) and late gadolinium enhancement (LGE). In 2012, our CMR unit adopted a chest pain protocol to enhance detection of inflammatory heart disease, using all 3 pulse sequences. In 2017, T1 relaxing mapping and T2 relaxation mapping were added to the chest pain protocol. Purpose This study was designed to assess the impact of pulse sequence changes in the CMR chest pain protocol on the detection rate of myocarditis. Methods An institutional cardiac imaging database was queried for all patients with chest pain who underwent a CMR study from 2009 thru 2018. The number of newly diagnosed cases of myocarditis per year was computed, based on the prevailing CMR diagnostic criteria at that time. The detection rate of new myocarditis cases per year, was calculated by dividing the number of new cases by the total of CMR studies performed for evaluation of chest pain, during each calendar year. Results Of the 4,946 patients in the cardiac imaging database, 2,126 patients underwent CMR imaging for complaints of chest pain. Detection rates of myocarditis by year are shown in Figure 1. Prior to inclusion of T1 STIR pulse sequences, CMR detection of myocarditis was nearly nil. Use of T2 STIR imaging allowed for an increased rate of myocarditis detection. However, addition of T1 mapping and T2 mapping in 2017 resulted in another increase in myocarditis detection rates from baseline. Figure 1. Detection rate of myocarditis. Conclusions Detection rates of myocarditis using CMR were improved by using T2 STIR pulse sequences, per the initial Lake Louise Criteria. Further enhancement of myocarditis detection rates is achieved by addition of T1 and T2 mapping. These CMR impact data provide additional support for the adoption of the recently modified Lake Louise Criteria (JACC Dec 2018; 72(24): 3158–3176).


1994 ◽  
Vol 9 (4) ◽  
pp. 230-232 ◽  
Author(s):  
Jack P. Campbell ◽  
Matthew C. Gratton ◽  
Joseph A. Salomone ◽  
Daniel J. Lindholm ◽  
William A. Watson

AbstractBackground:Background: In some emergency medical services (EMS) system designs, response time intervals are mandated with monetary penalties for noncompliance. These times are set with the goal of providing rapid, definitive patient care. The time interval of vehicle at scene-to-patient access (VSPA) has been measured, but its effect on response time interval compliance has not been determined.Purpose:To determine the effect of the VSPA interval on the mandated code 1 (<9 min) and code 2 (<13 min) response time interval compliance in an urban, public-utility model system.Methods:A prospective, observational study used independent third-party riders to collect the VSPA interval for emergency life-threatening (code 1) and emergency nonlife-threatening (code 2) calls. The VSPA interval was added to the 9-1-1 call-to-dispatch and vehicle dispatch-to-scene intervals to determine the total time interval from call received until paramedic access to the patient (9-1-1 call-to-patient access). Compliance with the man dated response time intervals was determined using the traditional time intervals (9-1-1 call-to-scene) plus the VSPA time intervals (9-1-1 call-to-patient access). Chi-square was used to determine statistical significance.Results:Of the 216 observed calls, 198 were matched to the traditional time intervals. Sixty three were code 1, and 135 were code 2. Of the code 1 calls, 90.5% were compliant using 9-1-1 call-to-scene intervals dropping to 63.5% using 9-1-1 call-to-patient access intervals (p<0.0005). Of the code 2 calls, 94.1% were compliant using 9-1-1 call-to-scene intervals. Compliance decreased to 83.7% using 9-1-1 call-to-patient access intervals (p = 0.012).Conclusion:The addition of the VSPA interval to the traditional time intervals impacts system response time compliance. Using 9-1-1 call-to-scene compliance as a basis for measuring system performance underestimates the time for the delivery of definitive care. This must be considered when response time interval compliances are defined.


1986 ◽  
Vol 23 (5) ◽  
pp. 727-733 ◽  
Author(s):  
Garry K. C. Clarke ◽  
Robert D. Meldrum ◽  
Sam G. Collins

We describe a computer-controlled, distance-measuring system designed for glacier-motion surveys. A Sharp PC-1500 pocket computer is used to control an AGA Geodimeter 122 infrared laser ranger. Slope distance and vertical angle are automatically measured and plotted at preselected time intervals and recorded on magnetic tape. As a demonstration, three field experiments were performed on Trapridge Glacier, Yukon Territory. In the first experiment the position of a glacier flow marker was measured at 1 min intervals for 39 h. The average velocity (toward the instrument) was found to be 2.99 mm h−1. Subglacial water pressure was simultaneously measured at the flow marker site. For the duration of the survey, water pressure was low, and there is no clear relationship between pressure variations and glacier motion. In the second experiment the distance to a stationary target was measured at 1 min intervals for 9 h. The calculated motion of this target was −0.149 mm h−1, giving an indication of the magnitude of uncorrected distance errors. The third experiment lasted 35 h and again involved measurements of glacier flow. The calculated target motion was 1.80 mm h−1 toward the instrument.


2001 ◽  
Vol 73 (11) ◽  
pp. 1749-1764 ◽  
Author(s):  
Antony N. Davies ◽  
Jörg Lambert ◽  
Robert J. Lancashire ◽  
Peter Lampen ◽  
Woody Conover ◽  
...  

In drawing up the specifications for a standard for multidimensional nuclear magnetic resonance spectroscopy (NMR) it became clear that the spectroscopic data content needed to be qualified by experimental condition information especially pertaining to the pulse sequences used to obtain the free induced decays or spectra. Failure to include this information not only severely inhibits the ability of subsequent data handling packages to work with the experimental data, but also makes interpretation of the final results virtually impossible.This paper has been produced in collaboration with the NMR spectrometer manufacturers in an attempt to get agreement on a definitive list of the most frequently used pulse sequence programs. The list includes entries where common agreement has been reached as to the acronym to name the experiment and the key instrument independent parameters needed to report concisely. It is not intended to restrict in any way the freedom of manufacturers or users to develop new and novel experimental pulse sequences, but should aid reporting of experimental data where the more common sequences are in use.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
John Ford ◽  
Nesrin Dogan ◽  
Lori Young ◽  
Fei Yang

Objectives. Radiomic features extracted from diverse MRI modalities have been investigated regarding their predictive and/or prognostic value in a variety of cancers. With the aid of a 3D realistic digital MRI phantom of the brain, the aim of this study was to examine the impact of pulse sequence parameter selection on MRI-based textural parameters of the brain. Methods. MR images of the employed digital phantom were realized with SimuBloch, a simulation package made for fast generation of image sequences based on the Bloch equations. Pulse sequences being investigated consisted of spin echo (SE), gradient echo (GRE), spoiled gradient echo (SP-GRE), inversion recovery spin echo (IR-SE), and inversion recovery gradient echo (IR-GRE). Twenty-nine radiomic textural features related, respectively, to gray-level intensity histograms (GLIH), cooccurrence matrices (GLCOM), zone size matrices (GLZSM), and neighborhood difference matrices (GLNDM) were evaluated for the obtained MR realizations, and differences were identified. Results. It was found that radiomic features vary considerably among images generated by the five different T1-weighted pulse sequences, and the deviations from those measured on the T1 map vary among features, from a few percent to over 100%. Radiomic features extracted from T1-weighted spin-echo images with TR varying from 360 ms to 620 ms and TE = 3.4 ms showed coefficients of variation (CV) up to 45%, while up to 70%, for T2-weighted spin-echo images with TE varying over the range 60–120 ms and TR = 6400 ms. Conclusion. Variability of radiologic textural appearance on MR realizations with respect to the choice of pulse sequence and imaging parameters is feature-dependent and can be substantial. It calls for caution in employing MRI-derived radiomic features especially when pooling imaging data from multiple institutions with intention of correlating with clinical endpoints.


2013 ◽  
Vol 325-326 ◽  
pp. 899-902
Author(s):  
Jin Ge Sang ◽  
Guo Li Yu ◽  
Ya Nan Wang ◽  
Jun Zhang

t gives a new type of Temperature Measuring System equipped with Samsung S3C2410. Chip DS18B20 is responsible for collecting temperature data, which was transmitted to the chip of S3C2410 in the way of digital signal. The hardware composition and software design of the system were discussed in detail. The experimental results indicate that the design improves the system stability and reliability.


2014 ◽  
Vol 716-717 ◽  
pp. 1338-1340
Author(s):  
Yang Ming He ◽  
Yan Qiu He ◽  
Guang Yao Xiong ◽  
Ming Feng Zhu

Halcon is a machine vision software. It can process all kinds of image processing problem. In this paper, Halcon is used to process moving targets detection, from which it can be seen how the software Halcon is used to process digital image. The algorithm includes region_ growing algorithm, image filtering and morphological operators, etc. The software Halcon can be used in digital signal, too. In the end, it is used to process pulse signal. The result shows that Halcon has powerful functions in digital data processing.


Sign in / Sign up

Export Citation Format

Share Document