assimilatory sulfate reduction
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Eliza Depoorter ◽  
Tom Coenye ◽  
Peter Vandamme

Burkholderia cepacia complex strain R-12632 produces ditropolonyl sulfide, an unusual sulfur-containing tropone, via a yet unknown biosynthetic pathway. Ditropolonyl sulfide purified from a culture of strain R-12632 inhibits the growth of various Gram-positive and Gram-negative multidrug resistant bacteria, with minimum inhibitory concentration (MIC) values as low as 16 μg/ml. In the present study we used a transposon mutagenesis approach combined with metabolite analyses to identify the genetic basis for antibacterial activity of strain R-12632 against Gram-negative bacterial pathogens. Fifteen of the 8304 transposon mutants investigated completely lost antibacterial activity against Klebsiella pneumoniae LMG 2095. In these loss-of-activity mutants, nine genes were interrupted. Four of those genes were involved in assimilatory sulfate reduction, two in phenylacetic acid (PAA) catabolism and one in glutathione metabolism. Via semipreparative fractionation and metabolite identification, it was confirmed that inactivation of the PAA degradation pathway or glutathione metabolism led to loss of ditropolonyl sulfide production. Based on earlier studies on the biosynthesis of tropolone compounds, the requirement for a functional PAA catabolic pathway for antibacterial activity in strain R-12632 indicated that this pathway likely provides the tropolone backbone for ditropolonyl sulfide. Loss of activity observed in mutants defective in assimilatory sulfate reduction and glutathione biosynthesis suggested that cysteine and glutathione are potential sources of the sulfur atom linking the two tropolone moieties. The demonstrated antibacterial activity of the unusual antibacterial compound ditropolonyl sulfide warrants further studies into its biosynthesis and biological role. Importance Burkholderia bacteria are historically known for their biocontrol properties and have been proposed as a promising and underexplored source of bioactive specialized metabolites. Burkholderia cepacia complex strain R-12632 inhibits various Gram-positive and Gram-negative resistant pathogens and produces numerous specialized metabolites, among which ditropolonyl sulfide. This unusual antimicrobial has been poorly studied and its biosynthetic pathway remained unknown. In the present study, we performed transposon mutagenesis of strain R-12632 and performed genome and metabolite analyses of loss-of-activity mutants to study the genetic basis for antibacterial activity. Our results indicate that the phenylacetic acid catabolism, assimilatory sulfate reduction and glutathione metabolism are necessary for ditropolonyl sulfide production. These findings contribute to understanding the biosynthesis and biological role of this unusual antimicrobial.


2020 ◽  
Author(s):  
Gareth S Kindler ◽  
Hon Lun Wong ◽  
Anthony W D Larkum ◽  
Michael Johnson ◽  
Fraser I MacLeod ◽  
...  

AbstractMicrobial mat ecosystems vary in complexity and structure depending on the environmental constraints placed by nature. Here, we describe in detail for the first time the community composition and functional potential of the microbial mats found in the supratidal, gypsum-rich, and hypersaline region of Blue Holes, Shark Bay. This was achieved via high throughput sequencing of total mat community DNA on the Illumina NextSeq platform. Mat communities were mainly comprised of Proteobacteria (29%), followed by Bacteroidetes/Chlorobi Group (11%), and Planctomycetes (10%). These mats were found to also harbor a diverse community of potentially novel microorganisms including members from the DPANN and Asgard archaea, Candidate Phyla Radiation (CPR) and other candidate phyla, with highest diversity indices found in the lower regions of the mat. Major metabolic cycles belonging to sulfur, carbon, nitrogen, and fermentation were detected in the mat metagenomes with the assimilatory sulfate reduction pathway being distinctly abundant. Critical microbial interactions were also inferred, and from 117 medium-to-high quality metagenome-assembled genomes (MAGs), viral defense mechanisms (CRISPR, BREX, and DISARM), elemental transport, osmoprotection, heavy metal and UV resistance were also detected in the mats. These analyses have provided a greater understanding of these distinct mat systems in Shark Bay, including key insights into adaptive responses.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 698 ◽  
Author(s):  
Ivan Kushkevych ◽  
Jiří Cejnar ◽  
Jakub Treml ◽  
Dani Dordević ◽  
Peter Kollar ◽  
...  

Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.


2019 ◽  
Vol 8 (27) ◽  
Author(s):  
Jordan T. Coelho ◽  
Michael W. Henson ◽  
J. Cameron Thrash

ABSTRACT Here, we present the draft genome sequence of strain LSUCC0112, a cultured representative from the Gulf of Mexico that is phylogenetically close to the OM182 clade within oligotrophic marine Gammaproteobacteria. LSUCC0112 shows the potential for aerobic heterotrophy, glycogen synthesis, flagellar motility, and assimilatory sulfate reduction.


2019 ◽  
Vol 8 (25) ◽  
Author(s):  
V. Celeste Lanclos ◽  
Michael W. Henson ◽  
Chase Doiron ◽  
J. Cameron Thrash

We present the draft genome sequence of strain LSUCC0057, a member of the SAR92 clade of Gammaproteobacteria, isolated from coastal waters near Buras, LA. The genome contains proteorhodopsin and indicates the potential for aerobic heterotrophy, assimilatory sulfate reduction, and carotenoid biosynthesis.


2019 ◽  
Author(s):  
Yusuke Okazaki ◽  
Yosuke Nishimura ◽  
Takashi Yoshida ◽  
Hiroyuki Ogata ◽  
Shin-ichi Nakano

SummaryMetagenomics has dramatically expanded the known virosphere, but freshwater viral diversity and their ecological interaction with hosts remain poorly understood. Here, we conducted a metagenomic exploration of planktonic dsDNA prokaryotic viruses by sequencing both virion (<0.22 μm) and cellular (0.22–5.0 μm) fractions collected spatiotemporally from a deep freshwater lake (Lake Biwa, Japan). This simultaneously reconstructed 183 complete (i.e., circular) viral genomes and 57 bacterioplankton metagenome-assembled genomes. Analysis of metagenomic read coverage revealed vertical partitioning of the viral community analogous to the vertically stratified bacterioplankton community. The hypolimnetic community was generally stable during stratification, but occasionally shifted abruptly, presumably due to lysogenic induction. Genes involved in assimilatory sulfate reduction were encoded in 20 (10.9%) viral genomes, including those of dominant viruses, and may aid viral propagation in sulfur-limited freshwater systems. Hosts were predicted for 40 (21.9%) viral genomes, encompassing 10 phyla (or classes of Proteobacteria) including ubiquitous freshwater bacterioplankton lineages (e.g., Ca. Fonsibacter and Ca. Nitrosoarchaeum). Comparison with viral genomes derived from published metagenomes revealed viral phylogeographic connectivity in geographically isolated habitats. Notably, analogous to their hosts, actinobacterial viruses were among the most diverse, ubiquitous, and abundant viral groups in freshwater systems, with potential high lytic activity in surface waters.


2018 ◽  
Vol 9 ◽  
Author(s):  
Hang Yu ◽  
Dwi Susanti ◽  
Shawn E. McGlynn ◽  
Connor T. Skennerton ◽  
Karuna Chourey ◽  
...  

2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Shubham K. Jaiswal ◽  
Rituja Saxena ◽  
Parul Mittal ◽  
Ankit Gupta ◽  
Vineet K. Sharma

ABSTRACT The genome sequence of Pseudomonas hussainii MB3, isolated from the rhizospheric region of mangroves in the Andaman Islands, is comprised of 3,644,788 bp and 3,159 protein coding genes. Draft genome analysis indicates that MB3 is an aerobic bacterium capable of performing assimilatory sulfate reduction, dissimilatory nitrate reduction, and denitrification.


mSystems ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Daniel P. Smith ◽  
Carrie D. Nicora ◽  
Paul Carini ◽  
Mary S. Lipton ◽  
Angela D. Norbeck ◽  
...  

ABSTRACT “Ca. Pelagibacter ubique” is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation. The alphaproteobacterium “Candidatus Pelagibacter ubique” strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all “Ca. Pelagibacter ubique” genes downstream from the previously confirmed S-adenosyl methionine (SAM) riboswitches bhmT, mmuM, and metY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the heme c shuttle-encoding gene ccmC and two small genes of unknown function (SAR11_1163 and SAR11_1164). This bacterium’s strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes, ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch. IMPORTANCE “Ca. Pelagibacter ubique” is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation.


2010 ◽  
Vol 22 (4) ◽  
pp. 1216-1231 ◽  
Author(s):  
Muhammad Sayyar Khan ◽  
Florian Heinrich Haas ◽  
Arman Allboje Samami ◽  
Amin Moghaddas Gholami ◽  
Andrea Bauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document