scholarly journals Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 698 ◽  
Author(s):  
Ivan Kushkevych ◽  
Jiří Cejnar ◽  
Jakub Treml ◽  
Dani Dordević ◽  
Peter Kollar ◽  
...  

Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.

2000 ◽  
Vol 66 (10) ◽  
pp. 4497-4502 ◽  
Author(s):  
Clifford L. Wang ◽  
Priya D. Maratukulam ◽  
Amy M. Lum ◽  
Douglas S. Clark ◽  
J. D. Keasling

ABSTRACT The conversion of sulfate to an excess of free sulfide requires stringent reductive conditions. Dissimilatory sulfate reduction is used in nature by sulfate-reducing bacteria for respiration and results in the conversion of sulfate to sulfide. However, this dissimilatory sulfate reduction pathway is inhibited by oxygen and is thus limited to anaerobic environments. As an alternative, we have metabolically engineered a novel aerobic sulfate reduction pathway for the secretion of sulfides. The assimilatory sulfate reduction pathway was redirected to overproduce cysteine, and excess cysteine was converted to sulfide by cysteine desulfhydrase. As a potential application for this pathway, a bacterium was engineered with this pathway and was used to aerobically precipitate cadmium as cadmium sulfide, which was deposited on the cell surface. To maximize sulfide production and cadmium precipitation, the production of cysteine desulfhydrase was modulated to achieve an optimal balance between the production and degradation of cysteine.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Ivan Kushkevych ◽  
Dani Dordević ◽  
Monika Vítězová

AbstractLower intraluminal colonic pH is an indication for the development of inflammatory bowel disease including active ulcerative colitis. Involvement of intestinal sulfate-reducing bacteria in decreasing bowel pH by the production of H2S and acetate as well as their sensitivity has never been reported before. The study of the relative pH and survival of Desulfovibrio piger Vib-7 by monitoring sulfate reduction parameters was the aim of this work. Monitoring was done through the measurement of bacterial growth (biomass), dissimilatory sulfate reduction parameters: sulfate consumption, lactate oxidation, hydrogen sulfide and acetate production. According to our results, we observed that lower pH (<5) significantly inhibited D. piger Vib-7 growth. This inhibition was also noticed when alkaline media (>9 pH) was used, though the reduction was not at the rate as in media with pH of 4. The research indicates that the growth of D. piger Vib-7 is inhibited at pH of 4 which is not as low as the pH found in people with severely developed inflammatory bowel diseases such as ulcerative colitis. Certainly the interaction (synergistic effect) between both hydrogen sulfide and acetate accumulation can also play an important etiological role in the development of bowel inflammation in humans and animals.


2015 ◽  
Vol 6 (1) ◽  
pp. 40-44
Author(s):  
G. І. Zvir ◽  
O. М. Moroz ◽  
S. O. Hnatush

Objects of the study were sulfate-reducing bacteria Desulfovibrio desulfuricans ІМV К-6, isolated from Yavorivske lakе. This strain is kept in the collection of microorganisms at the Department of Microbiology of Ivan Franko National University. Bacteria were grown in the Kravtsov-Sorokin’s liquid medium with the following composition (g/l): Na2SO4 × 10H2O – 0.5, NaH2PO4 – 0.3, K2HPO4 – 0.5, (NH4)2SO4 – 0.2, MgSO4 × 7H2O – 0.1, C3H5O3Na – 2.0. The bacteria were grown for 10 days at 30 °C under anaerobic conditions. In order to study the sensitivity of the sulfate reducing bacteria to action of Uragan and Raundup herbicides, the cells of D. desulfuricans ІМV К-6 were grown at the concentrations of herbicides as follows: 0,28 mМ, 2,8 mМ (concentration recommended for use) and 5,6 mM. Biomass was determined by photometric method. Concentration of hydrogen sulfide in the culture medium was determined by photo-colorimetric method. Concentration of sulfate-ions in the medium was determined by turbidimetric method. Capacity of sulfate reducing bacteria D. desulfuricans ІМV K-6 to grow, reducing sulfates to hydrogen sulfide upon influence of Uragan and Raundup herbicides was studied. Accumulation of bacterial biomass in the control and upon influence of herbicides was the highest on the fourth-sixth day of cultivation, and after that the stationary growth phase began. It was shown that sulfate reducing bacteria upon influence of herbicides grew more intensively compared with the control. It was discovered that the level of biomass changed depending on the increasing concentration of Uragan or Raundup herbicides in the medium. Sulfate reducing bacteria D. desulfuricans ІМV K-6 could reduce sulfates to hydrogen sulfide in the presence of sulfates and organic compounds in the medium (dissimilatory sulfate reduction). Stimulatory influence of Uragan and Raundup on the dissimilatory sulfate reduction process of D. desulfuricans ІМВ К-6 has been discovered. The formation of hydrogen sulfide correlates with the usage of sulfatе ions. The capacity of sulfate reducing bacteria D. desulfuricans ІМV K-6 to grow, reducing sulfate ions to hydrogen sulfide upon influence of Uragan and Raundup may be caused by presence of inert components (sulfates) in these herbicides that can be used by microorganisms as electron acceptors during sulfate respiration. 


2021 ◽  
Vol 9 (2) ◽  
pp. 429
Author(s):  
Rikuan Zheng ◽  
Shimei Wu ◽  
Chaomin Sun

Sulfur cycling is primarily driven by sulfate reduction mediated by sulfate-reducing bacteria (SRB) in marine sediments. The dissimilatory sulfate reduction drives the production of enormous quantities of reduced sulfide and thereby the formation of highly insoluble metal sulfides in marine sediments. Here, a novel sulfate-reducing bacterium designated Pseudodesulfovibrio cashew SRB007 was isolated and purified from the deep-sea cold seep and proposed to represent a novel species in the genus of Pseudodesulfovibrio. A detailed description of the phenotypic traits, phylogenetic status and central metabolisms of strain SRB007 allowed the reconstruction of the metabolic potential and lifestyle of a novel member of deep-sea SRB. Notably, P. cashew SRB007 showed a strong ability to resist and remove different heavy metal ions including Co2+, Ni2+, Cd2+ and Hg2+. The dissimilatory sulfate reduction was demonstrated to contribute to the prominent removal capability of P. cashew SRB007 against different heavy metals via the formation of insoluble metal sulfides.


2013 ◽  
Vol 67 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Madawala Liyanage Duminda Jayaranjan ◽  
Ajit P. Annachhatre

Investigations were undertaken to utilize flue gas desulfurization (FGD) gypsum for the treatment of leachate from the coal ash (CA) dump sites. Bench-scale investigations consisted of three main steps namely hydrogen sulfide (H2S) production by sulfate reducing bacteria (SRB) using sulfate from solubilized FGD gypsum as the electron acceptor, followed by leaching of heavy metals (HMs) from coal bottom ash (CBA) and subsequent precipitation of HMs using biologically produced sulfide. Leaching tests of CBA carried out at acidic pH revealed the existence of several HMs such as Cd, Cr, Hg, Pb, Mn, Cu, Ni and Zn. Molasses was used as the electron donor for the biological sulfate reduction (BSR) process which produced sulfide rich effluent with concentration up to 150 mg/L. Sulfide rich effluent from the sulfate reduction process was used to precipitate HMs as metal sulfides from CBA leachate. HM removal in the range from 40 to 100% was obtained through sulfide precipitation.


2020 ◽  
Vol 9 (6) ◽  
pp. 1920 ◽  
Author(s):  
Ivan Kushkevych ◽  
Jorge Castro Sangrador ◽  
Dani Dordević ◽  
Monika Rozehnalová ◽  
Martin Černý ◽  
...  

Background: Inflammatory bowel diseases (IBDs) are multifactorial illnesses of the intestine, to which microorganisms are contributing. Among the contributing microorganisms, sulfate-reducing bacteria (SRB) are suggested to be involved in the process of bowel inflammation due to the production of hydrogen sulfide (H2S) by dissimilatory sulfate reduction. The aims of our research were to physiologically examine SRB in fecal samples of patients with IBD and a control group, their identification, the study of the process of dissimilatory sulfate reduction (sulfate consumption and H2S production) and biomass accumulation. Determination of biogenic elements of the SRB and evaluation of obtained parameters by using statistical methods were also included in the research. The material for the research consisted of 14 fecal samples, which was obtained from patients and control subjects. Methods: Microscopic techniques, microbiological, biochemical, biophysical methods and statistical analysis were included. Results: Colonies of SRB were isolated from all the fecal samples, and subsequently, 35 strains were obtained. Vibrio-shaped cells stained Gram-negative were dominant in all purified studied strains. All strains had a high percentage of similarity by the 16S rRNA gene with deposited sequences in GenBank of Desulfovibrio vulgaris. Cluster analysis of sulfate reduction parameters allowed the grouping of SRB strains. Significant (p < 0.05) differences were not observed between healthy individuals and patients with IBD with regard to sulfate reduction parameters (sulfate consumption, H2S and biomass accumulation). Moreover, we found that manganese and iron contents in the cell extracts are higher among healthy individuals in comparison to unhealthy individuals that have an intestinal bowel disease, especially ulcerative colitis. Conclusions: The observations obtained from studying SRB emphasize differences in the intestinal microbial processes of healthy and unhealthy people.


2001 ◽  
Vol 67 (2) ◽  
pp. 888-894 ◽  
Author(s):  
Jan Detmers ◽  
Volker Brüchert ◽  
Kirsten S. Habicht ◽  
Jan Kuever

ABSTRACT Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.0 to 42.0‰. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation. Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect isotope fractionation. Previous models that explained fractionation only in terms of sulfate reduction rates appear to be oversimplified. The species-specific physiology of each sulfate reducer thus needs to be taken into account to understand the regulation of sulfur isotope fractionation during dissimilatory sulfate reduction.


2021 ◽  
Vol 15 (2) ◽  
pp. 35-46
Author(s):  
O. M. Сhayka ◽  
◽  
T. B. Peretyatko ◽  
A. A. Halushka ◽  

Introduction. Thermophilic sulfate-reducing bacteria attract attention of scientists as the potential agents of purification of wastewater polluted by sulfur and its compounds, heavy metal ions and organic compounds. These bacteria oxidize different organic substrates using metals with variable valency as electron acceptors and transform them into non-toxic or less toxic forms for living organisms. However, wastewater contains high concentrations of different toxic xenobiotics, particularly, metal ions that have negative influence on living organisms. For this reason, it is important to use resistant strains of microorganisms for the purification of wastewater. The aim of this work was to identify the thermophilic sulfur-reducing bacteria, isolated from “Nadiia” pit spoil heap of Chervonohrad mining region, and to study their properties. Materials and Methods. Thermophilic sulfur-reducing bacteria were isolated from the samples of rock of “Nadiia” pit heap at 50 cm depth. Bacteria were cultivated in TF medium under the anaerobic conditions in anaerostates. Cell biomass was measured turbidimetrically using the photoelectric colorimeter KFK-3 (λ = 340 nm, 3 mm cuvette). Hydrogen sulfide content was measured photoelectrocolorymetrically by the production of methylene blue. Organic acids content was measured by high performance liquid chromatography. Cr(VI), Fe(III), Мn(IV) and NO3– content was measured turbidimetrically. Results. Thermophilic sulfur-reducing bacteria were isolated from the rock of “Nadiia” pit heap of Chervonohrad mining region. They were identified as Moorela thermoacetica based on the morpho-physiological and biochemical properties and on the results of phylogenetic analysis. M. thermoacetica Nadia-3 grow in the synthetic TF medium, have the shape of elongated rods, are gram-positive, endospore-forming. They form light brown colonies. Optimal growth was observed at 50–55 °C, pH 6.5–7. The bacteria utilize glucose, starch, fructose, maltose, lactose, sodium lactate, arabinose, cellulose, maltose, glycerol, fumarate, and ethanol as carbon sources. The highest sulfidogenic activity of M. thermoacetica Nadia-3 was found in media with glycerol, lactose, and glucose. M. thermoacetica Nadia-3 reduce SO42-, S2O32-, Fe(III), NO3–, Cr(VI) compounds besides elemental sulfur. They accumulate biomass at K2Cr2O7 concentrations of 0.1–1 mM. Sulfur reduction is not the main way of energy accumulation. Conclusions. Thermophilic chromium-resistant sulfur-reducing bacteria M. thermoacetica Nadia-3, that produce hydrogen sulfide during the oxidation of different organic compounds, were isolated from the rock of “Nadiia” pit heap. They reduce Fe(III), Cr(VI), NO3–, SO42-, S2O32-, besides elemental sulfur.


2019 ◽  
Vol 9 (4) ◽  
pp. 4066-4069 ◽  

An integral part of the intestinal microbiota is undoubtedly formed by lactic acid bacteria (LAB). Their presence in the digestive tract is essential for its proper functioning. During inflammatory bowel disease, such as ulcerative colitis (UC), LAB occurrence is reduced while sulfate-reducing bacteria (SRB) occur widely in the intestine resulting in an increase of their metabolite, hydrogen sulfide. Inhibitory concentration and mechanism of action of hydrogen sulfide on LAB are not fully known yet. The aim of this paper is to find the proper testing methods for evaluation of the interaction between hydrogen sulfide and lactic acid bacteria, including minimal inhibitory concentration (MIC) determination. Spectrophotometric, colorimetric, agar plate methods and combination of these methods were tested. Thousands of people from all over the world are affected by inflammatory bowel disease every year. The gained results could help to understand and improve the stability of intestinal microbiome, improve the treatment of bowel inflammation diseases, or prevent bowel disease altogether


2020 ◽  
Author(s):  
Jin-tian Li ◽  
Pu Jia ◽  
Xiao-juan Wang ◽  
Shi-wei Feng ◽  
Tao-tao Yang ◽  
...  

Abstract BackgroundThe widespread occurrence of sulfate-reducing microorganisms (SRMs, which are typically considered anaerobic organisms) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in continuously oxic/hypoxic terrestrial environments rich in sulfate. However, little attention has been paid to such a possibility, leading to an incomplete understanding of microorganisms driving terrestrial part of the global sulphur cycle.ResultsIn this study, genome-centric metagenomics was employed to explore SRMs in a revegetated acidic mine wasteland under continuously oxic/hypoxic conditions. We reconstructed 12 Acidobacteria and four Deltaproteobacteria genomes encoding reductive DsrAB, of which five represented three new SRM genera. Our results showed that Acidobacteria-related SRMs differed considerably from Deltaproteobacteria-related SRMs in metabolic potentials. Genomes of Acidobacteria-related SRMs harbored more glycoside hydrolase (GH) genes than those of previously known SRMs. They also tended to encode more oxygen-tolerant hydrogenases and cytochrome c oxidases, but less methyl-accepting chemotaxis proteins (MCPs) than genomes of Deltaproteobacteria-related SRMs. More importantly, we discovered that SRM-infecting viruses can contribute to glycoside hydrolysis, chemotaxis and antioxidation of their hosts. Remarkably, one GH encoded by a SRM-infecting virus is responsible for the liberation of rhamnose (a monosaccharide that is accessible directly to SRMs for dissimilatory sulfate reduction) from plant cell-wall-derived oligosaccharides.ConclusionsTaken together, our results do not only improve our understanding of microorganisms driving dissimilatory sulfate reduction in terrestrial environments under continuously oxic/hypoxic conditions but also provides the first evidence for putative roles of viruses in S biogeochemical cycle in terrestrial ecosystems.


Sign in / Sign up

Export Citation Format

Share Document