scholarly journals Study on Mechanical Properties of Gravelly Sand under Different Stress Paths

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Dongjie Zhang ◽  
Fei Luo ◽  
Zhanyuan Zhu ◽  
Jiaming Liu ◽  
Jing Li ◽  
...  

To investigate the strength and deformation characteristics of gravelly sand on the Qinghai-Tibet Plateau under different stress paths, a series of triaxial shear tests was conducted under confining pressures of 50–400 kPa in four types of stress path conditions of conventional triaxial compression (CTC) (drained and undrained), triaxial compression (TC), and reduced triaxial compression (RTC). We can see from the test results that gravelly sand samples show strain hardening and shear contraction under the CTC (drained), TC, and RTC during the shearing process but exhibit strain softening under the CTC (undrained). To explore the microscopic deformation mechanism of gravelly sand, a characteristic angle θ was defined to reflect the relative movement of soil particles. The relationship between principal stress ratio σ1/σ3 and characteristic angle θ and that between void ratio e and characteristic angle θ were derived. Subsequently, the relationship expression of stress ratio η (q/p) and void ratio e was established, and the trend of void ratio e with the stress path was studied. To describe the strain hardening and strain softening characteristics of gravelly sand in different stress paths, a new dilatancy equation was obtained by introducing the characteristic state stress ratio Mc into the dilatancy equation of the modified Cam-Clay model based on the state-dependent dilatancy theory. Finally, an elastoplastic constitutive model of gravelly sand was established by applying a nonassociate flow rule. All model parameters can be determined by triaxial shear tests under different stress paths, and the comparison results show that the proposed model can well reflect the mechanical behaviors of gravelly sand under different stress paths.

2008 ◽  
Vol 45 (7) ◽  
pp. 939-956 ◽  
Author(s):  
P. R. Thomson ◽  
R. C.K. Wong

X-ray computed tomography (CT) methods and specialized triaxial equipment were developed to quantify void ratio distribution within saturated sand specimens reconstituted by water pluviation and moist tamping methods during undrained triaxial compression and extension. The CT measurements were obtained at several points along the stress path of each specimen without significant removal of axial load. It was observed that two reconstitution methods yielded very different void ratio distributions within specimens. Significant void ratio redistribution occurred within each specimen during the undrained shearing tests. The influences of void ratio redistribution on globally observed specimen responses are discussed. The findings of this research investigation provide unique insight into fundamental aspects of saturated sand behaviour during undrained triaxial shearing.


2006 ◽  
Vol 43 (11) ◽  
pp. 1195-1212 ◽  
Author(s):  
Zeina Finge ◽  
Thiep Doanh ◽  
Phillippe Dubujet

The undrained behaviour of loose and overconsolidated Hostun RF sand in triaxial compression and extension tests is described. The samples are isotropically or anisotropically overconsolidated along several constant effective stress ratio paths with various overconsolidation ratios (OCR), up to 24. To minimize the effect of variation of density on the observed undrained behaviour, all tested samples are required to have a nearly identical void ratio before the final monotonic undrained shearing. Isotropically overconsolidated and normally consolidated samples exhibit the same phenomenon of partial static liquefaction, but anisotropically overconsolidated specimens reveal a completely different undrained behaviour. A common pseudoelastic response is observed for a given overconsolidation history. This response is induced by recent stress history in terms of effective stress paths, independent of the OCR during overconsolidation. The initial gradient of the effective stress paths seems to depend solely on the direction of the previous linear stress path history. This paper offers a comprehensive understanding of the mechanism of the induced anisotropy of loose sand created by simple linear stress paths from three different initial stress states in the classical triaxial plane. The pseudoelastic response can be adequately modelled by a simple hyperelastic component of the elastoplastic framework.Key words: induced anisotropy, overconsolidation, instability, laboratory undrained tests, sand, hyperelasticity.


1990 ◽  
Vol 27 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Y. P. Vaid ◽  
E. K. F. Chung ◽  
R. H. Kuerbis

The effect of stress path on the steady state line of a liquefiable sand is investigated. Results from undrained triaxial compression and extension tests on water-deposited sands show that the steady state line of a given sand, though unique in the effective stress space, is not so in the void ratio – effective stress space. The sand is contractive over a much larger range of void ratios in extension than in compression. While a single steady state line emerges for compression loading, extension loading yields several lines, each characteristic to a given deposition void ratio. All these extension lines lie to the left of the compression line in void ratio – effective stress space. Thus at a given void ratio, steady state strength is smaller in extension than in compression, the difference increasing as the sand becomes looser. The implications of the results are discussed in relation to practical design. Key words: sand, liquefaction, steady state, stress path.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-24
Author(s):  
D. Reid ◽  
R. Fanni ◽  
A. Fourie

The cross-anisotropic nature of soil strength has been studied and documented for decades, including the increased propensity for cross-anisotropy in layered materials. However, current engineering practice for tailings storage facilities (TSFs) does not appear to generally include cross-anisotropy considerations in the development of shear strengths. This being despite the very common layering profile seen in subaerially-deposited tailings. To provide additional data to highlight the strength cross-anisotropy of tailings, high quality block samples from three TSFs were obtained and trimmed to enable Hollow Cylinder Torsional Shear tests to be sheared at principal stress angles of 0 and 45 degrees during undrained shearing. Consolidation procedures were carried out such that the drained rotation of principal stress angle that would precede potential undrained shear events for below-slope tailings was reasonably simulated. The results indicated the significant effects of cross-anisotropy on the undrained strength, instability stress ratio, contractive tendency and brittleness of each of the three tailings types. The magnitude of cross-anisotropy effects seen was generally consistent with previous published data on sands.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yugui Yang ◽  
Feng Gao ◽  
Hongmei Cheng ◽  
Yuanming Lai ◽  
Xiangxiang Zhang

The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.


2020 ◽  
Vol 198 ◽  
pp. 01034
Author(s):  
Heng Zhou ◽  
Ying Zhang ◽  
Bo Liu ◽  
Shengjie Di ◽  
Peng Huang

With the rapid development of infrastructure construction, the edge shape analysis of underground chamber excavation in water conservancy and hydropower projects has received more and more attention. This paper takes an underground chamber of a hydropower project as the research object and uses an ideal elastoplastic stress-strain softening model to study the relationship between deformation, stress, plastic zone and strength parameters. The results show that the value of each shear strength parameter has a significant effect on the distance of the plastic zone, and the calculation result may provide a basis for the design.


2014 ◽  
Vol 622-623 ◽  
pp. 179-185 ◽  
Author(s):  
Piotr Skubisz ◽  
Maciej Rumiński ◽  
Łukasz Lisiecki

The paper presents selected aspects of analysis cold micro-forging process of a screw made of austenitic stainless steel, concerning relation between strain and hardness. Strain hardening character of a material in consecutive forming operations was analyzed experimentally by the measurement of hardness distribution made on longitudinal axial sections of screws. The relationship between hardness and effective strain (hardness curve) was determined, which made it possible to obtain strain distributions in different regions of a material subjected to cold deformation on the basis of strain distribution numerically estimated with FEM simulation performed using QForm2D/3D commercial software. Conclusions were formulated concerning strain inhomogeneity and strain-hardening intensity with respect to the correlation between strain and hardness. It was also concluded, that nonuniformity of hardening rate in a bulk can lead to local variations in flow stress and eventually, to occurrence of the metal flow related defects, which was illustrated with a case study of cold heading of self-tapping screw of AISI 304Cu stainless steel, with large head diameter to shank diameter ratio. In order to validate the obtained results, the same method was used for analysis of hardness development in steel 19MnB4.


Sign in / Sign up

Export Citation Format

Share Document