scholarly journals The limits of automatic sensorimotor processing during word processing: investigations with repeated linguistic experience, memory consolidation during sleep, and rich linguistic learning contexts

Author(s):  
Fritz Günther ◽  
Sophia Antonia Press ◽  
Carolin Dudschig ◽  
Barbara Kaup

AbstractWhile a number of studies have repeatedly demonstrated an automatic activation of sensorimotor experience during language processing in the form of action-congruency effects, as predicted by theories of grounded cognition, more recent research has not found these effects for words that were just learned from linguistic input alone, without sensorimotor experience with their referents. In the present study, we investigate whether this absence of effects can be attributed to a lack of repeated experience and consolidation of the associations between words and sensorimotor experience in memory. To address these issues, we conducted four experiments in which (1 and 2) participants engaged in two separate learning phases in which they learned novel words from language alone, with an intervening period of memory-consolidating sleep, and (3 and 4) we employed familiar words whose referents speakers have no direct experience with (such as plankton). However, we again did not observe action-congruency effects in subsequent test phases in any of the experiments. This indicates that direct sensorimotor experience with word referents is a necessary requirement for automatic sensorimotor activation during word processing.

2021 ◽  
Author(s):  
Fritz Guenther ◽  
Sophia Antonia Press ◽  
Carolin Dudschig ◽  
Barbara Kaup

While a number of studies have repeatedly demonstrated an automatic activation of sensorimotor experience during language processing in the form of action-congruency effects, as predicted by theories of grounded cognition, more recent research has not found these effects for words that were just learned from linguistic input alone, without sensorimotor experience with their referents. In the present study, we investigate whether this absence of effects can be attributed to a lack of repeated experience and consolidation of the associations between words and sensorimotor experience in memory. To address these issues, we conducted four experiments in which (1 and 2) participants engaged in two separate learning phases in which they learned novel words from language alone, with an intervening period of memory-consolidating sleep, and (3 and 4) we employed familiar words whose referents speakers have no direct experience with (such as plankton). However, we again did not observe action-congruency effects in subsequent test phases in any of the experiments. This indicates that direct sensorimotor experience with word referents is a necessary requirement for automatic sensorimotor activation during word processing.


2020 ◽  
Author(s):  
Kun Sun

Expectations or predictions about upcoming content play an important role during language comprehension and processing. One important aspect of recent studies of language comprehension and processing concerns the estimation of the upcoming words in a sentence or discourse. Many studies have used eye-tracking data to explore computational and cognitive models for contextual word predictions and word processing. Eye-tracking data has previously been widely explored with a view to investigating the factors that influence word prediction. However, these studies are problematic on several levels, including the stimuli, corpora, statistical tools they applied. Although various computational models have been proposed for simulating contextual word predictions, past studies usually preferred to use a single computational model. The disadvantage of this is that it often cannot give an adequate account of cognitive processing in language comprehension. To avoid these problems, this study draws upon a massive natural and coherent discourse as stimuli in collecting the data on reading time. This study trains two state-of-art computational models (surprisal and semantic (dis)similarity from word vectors by linear discriminative learning (LDL)), measuring knowledge of both the syntagmatic and paradigmatic structure of language. We develop a `dynamic approach' to compute semantic (dis)similarity. It is the first time that these two computational models have been merged. Models are evaluated using advanced statistical methods. Meanwhile, in order to test the efficiency of our approach, one recently developed cosine method of computing semantic (dis)similarity based on word vectors data adopted is used to compare with our `dynamic' approach. The two computational and fixed-effect statistical models can be used to cross-verify the findings, thus ensuring that the result is reliable. All results support that surprisal and semantic similarity are opposed in the prediction of the reading time of words although both can make good predictions. Additionally, our `dynamic' approach performs better than the popular cosine method. The findings of this study are therefore of significance with regard to acquiring a better understanding how humans process words in a real-world context and how they make predictions in language cognition and processing.


1997 ◽  
Vol 9 (5) ◽  
pp. 664-686 ◽  
Author(s):  
D. Bavelier ◽  
D. Corina ◽  
P. Jezzard ◽  
S. Padmanabhan ◽  
V. P. Clark ◽  
...  

In this study, changes in blood oxygenation and volume were monitored while monolingual right-handed subjects read English sentences. Our results confirm the role of the left peri-sylvian cortex in language processing. Interestingly, individual subject analyses reveal a pattern of activation characterized by several small, limited patches rather than a few large, anatomically well-circumscribed centers. Between-subject analyses confirm a lateralized pattern of activation and reveal active classical language areas including Broca's area, Wernicke's area, and the angular gyms. In addition they point to areas only more recently considered as language-relevant including the anterior portion of the superior temporal sulcus. This area has not been reliably observed in imaging studies of isolated word processing. This raises the hypothesis that activation in this area is dependent on processes specific to sentence reading.


1999 ◽  
Vol 10 (1) ◽  
pp. 85-91
Author(s):  
Chris Davis ◽  
Anne Castles

ABSTRACTThis paper discusses the background and use of the masked priming procedure in adult psycholinguistic research. Using this technique, we address the issue of how precise the letter and word processing systems of adults is for rapidly displayed stimuli. Data is reviewed that suggests that, for skilled readers, the letter and word recognition system is sensitively tuned to the discrimination demands imposed on it by the properties of the written language. That is, the recognition system is able to be discriminative where precision is required, but is also able to consider and use incomplete information when this is predictive.


2007 ◽  
Vol 10 (2) ◽  
pp. 201-210 ◽  
Author(s):  
BRENDAN STUART WEEKES ◽  
I FAN SU ◽  
WENGANG YIN ◽  
XIHONG ZHANG

Cognitive neuropsychological studies of bilingual patients with aphasia have contributed to our understanding of how the brain processes different languages. The question we asked is whether differences in script have any impact on language processing in bilingual aphasic patients who speak languages with different writing systems: Chinese and Mongolian. We observed a pattern of greater impairment to written word comprehension and oral reading in L2 (Chinese) than in L1 (Mongolian) for two patients. We argue that differences in script have only a minimal effect on written word processing in bilingual aphasia when the age of acquisition, word frequency and imageability of lexical items is controlled. Our conclusion is that reading of familiar words in Mongolian and Chinese might not require independent cognitive systems or brain regions.


2016 ◽  
Vol 6 (8) ◽  
pp. 1584
Author(s):  
Li Li

This study is to compare L1 (first language) roles between Chinese-English and alphabetic bilinguals’ mental lexicons through reviewing empirical studies. L1 lexicon plays an important role in L2 (second language) processing in two aspects for alphabetic bilinguals, automatic activation of similar L1 to sensory input of L2, and that of L1 translation equivalent. While for Chinese English learners, L1 lexicon basically influences L2 by equivalent activation only, and the effect may persist throughout their lives, which is dramatically different from the developmental pattern of alphabetic bilinguals. The differences may come from different typological distance between the two languages, different composition of L2 mental lexicon, and their unique English acquisition experience in China.


2019 ◽  
Author(s):  
Marco Alessandro Petilli ◽  
Fritz Günther ◽  
Alessandra Vergallito ◽  
Marco Ciapparelli ◽  
Marco Marelli

In their strongest formulation, theories of grounded cognition claim that concepts are made up of sensorimotor information. Following such equivalence, perceptual properties of objects should consistently influence processing, even in purely linguistic tasks, where perceptual information is neither solicited nor required. Previous studies have tested this prediction in semantic priming tasks, but they have not observed perceptual influences on participants’ performances. However, those findings suffer from critical shortcomings, which may have prevented potential visually grounded/perceptual effects from being detected. Here, we investigate this topic by applying an innovative method expected to increase the sensitivity in detecting such perceptual effects. Specifically, we adopt an objective, data-driven, computational approach to independently quantify vision-based and language-based similarities for prime-target pairs on a continuous scale. We test whether these measures predict behavioural performance in a semantic priming mega-study with various experimental settings. Vision-based similarity is found to facilitate performance, but a dissociation between vision-based and language-based effects was also observed. Thus, in line with theories of grounded cognition, perceptual properties can facilitate word processing even in purely linguistic tasks, but the behavioural dissociation at the same time challenges strong claims of sensorimotor and conceptual equivalence.


2020 ◽  
Author(s):  
Arnold Kochari ◽  
Ashley Lewis ◽  
Jan-Mathijs Schoffelen ◽  
Herbert Schriefers

AbstractThe possibility to combine smaller units of meaning (e.g., words) to create new and more complex meanings (e.g., phrases and sentences) is a fundamental feature of human language. In the present project, we investigated how the brain supports the semantic and syntactic composition of two-word adjective-noun phrases in Dutch, using magnetoencephalography (MEG). The present investigation followed up on previous studies reporting a composition effect in the left anterior temporal lobe (LATL) when comparing neural activity at nouns combined with adjectives, as opposed to nouns in a non-compositional context. The first aim of the present study was to investigate whether this effect, as well as its modulation by noun specificity and adjective class, can also be observed in Dutch. A second aim was to investigate to what extent these effects may be driven by syntactic composition rather than primarily by semantic composition as was previously proposed. To this end, a novel condition was administered in which participants saw nouns combined with pseudowords lacking meaning but agreeing with the nouns in terms of grammatical gender, as real adjectives would. We failed to observe a composition effect or its modulation in both a confirmatory analysis (focused on the cortical region and time-window where it has previously been reported) and in exploratory analyses (where we tested multiple regions and an extended potential time-window of the effect). A syntactically driven composition effect was also not observed in our data. We do, however, successfully observe an independent, previously reported effect on single word processing in our data, confirming that our MEG data processing pipeline does meaningfully capture language processing activity by the brain. The failure to observe the composition effect in LATL is surprising given that it has been previously reported in multiple studies. Reviewing all previous studies investigating this effect, we propose that materials and a task involving imagery might be necessary for this effect to be observed. In addition, we identified substantial variability in the regions of interest analysed in previous studies, which warrants additional checks of robustness of the effect. Further research should identify limits and conditions under which this effect can be observed. The failure to observe specifically a syntactic composition effect in such minimal phrases is less surprising given that it has not been previously reported in MEG data.


2020 ◽  
Vol 5 (1) ◽  
pp. 529
Author(s):  
Youtao Lu ◽  
James L. Morgan

Previous studies reported conflicting results for the effects of homophony on visual word processing across languages. On finding significant differences in homophone density in Japanese, Mandarin Chinese and English, we conducted two experiments to compare native speakers’ competence in homophone auditory processing across these three languages. A lexical decision task showed that the effect of homophony on word processing in Japanese was significantly less detrimental than in Mandarin and English. A word-learning task showed that native Japanese speakers were the fastest in learning novel homophones. These results suggest that language-intrinsic properties influence corresponding language processing abilities of native speakers.


Sign in / Sign up

Export Citation Format

Share Document