gtp cyclohydrolase ii
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 0)

Biochemistry ◽  
2021 ◽  
Author(s):  
Madison M. Smith ◽  
Brett A. Beaupre ◽  
Dariush C. Fourozesh ◽  
Kathleen M. Meneely ◽  
Audrey L. Lamb ◽  
...  

Author(s):  
Savita Yadav ◽  
Ranajit Nivrutti Shinde ◽  
Suruchi Singh ◽  
Subramanian Karthikeyan ◽  
Balvinder Singh

2020 ◽  
Vol 28 ◽  
Author(s):  
Carla Sílvia Silva Teixeira ◽  
Nuno M. F. S. A. Cerqueira ◽  
Sérgio Filipe Sousa

In spite of the medical and technological developments of the last centuries, Tuberculosis (TB) has remained a challenging disease, with a limited number of therapeutic options, particularly in light of the increase in drug-resistant cases. The search for new molecules continues, with several candidates currently in clinical testing and ongoing efforts to identify novel targets. This work summarizes recent developments on anti-TB therapy, starting by discussing the current epidemiologic status and presenting an overview of the history of anti-tuberculosis drug discovery. Special attention is dedicated to five multifunctional enzymes that are regarded as promising targets for new anti-TB drugs: 5-aminoimidazole4-carboxamide ribonucleotide transformylase/IMP cyclohydrolase (ATIC); 3,4-dihydroxy-2-butanone 4-phosphate synthase (DHBPS)/GTP cyclohydrolase II (GCHII); glutamine dependent NAD+ Synthetase (NadE); chorismate synthase (CS); and Tryptophan synthase (TS). These enzymes are involved in metabolic pathways critical for the M. tuberculosis survival, growth or replication, but that are not expressed in humans or have significant differences in terms of functionality, which makes them appealing targets. Their function, structure, possible catalytic mechanisms and current inhibition strategies and inhibitors are reviewed and discussed.


2020 ◽  
pp. MPMI-07-20-0209
Author(s):  
Nico Nouwen ◽  
Jean-Francois Arrighi ◽  
Djamel Gully ◽  
Eric Giraud

Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2020 ◽  
Author(s):  
Emilie Björnsdotter ◽  
Marcin Nadzieja ◽  
Wei Chang ◽  
Leandro Escobar-Herrera ◽  
Davide Mancinotti ◽  
...  

AbstractFaba bean is a widely adapted and high-yielding legume cultivated for its protein-rich seeds1. However, the seeds accumulate the anti-nutritional pyrimidine glucosides vicine and convicine, which can cause haemolytic anaemia—favism—in the 400 million individuals genetically predisposed by a deficiency in glucose-6-phosphate dehydrogenase2. Here, we identify the first enzyme associated with vicine and convicine biosynthesis, which we name VC1. We show that VC1 co-locates with the major QTL for vicine and convicine content and that the expression of VC1 correlates highly with vicine content across tissues. We also show that low-vicine varieties express a version of VC1 carrying a small, frame-shift insertion, and that overexpression of wild-type VC1 leads to an increase in vicine levels. VC1 encodes a functional GTP cyclohydrolase II, an enzyme normally involved in riboflavin biosynthesis from the purine GTP. Through feeding studies, we demonstrate that GTP is a precursor of vicine both in faba bean and in the distantly related plant bitter gourd. Our results reveal an unexpected biosynthetic origin for vicine and convicine and pave the way for the development of faba bean cultivars that are free from these anti-nutrients, providing a safe and sustainable source of dietary protein.


2014 ◽  
Vol 27 (5) ◽  
pp. 437-445 ◽  
Author(s):  
Svetlana N. Yurgel ◽  
Jennifer Rice ◽  
Elizabeth Domreis ◽  
Joseph Lynch ◽  
Na Sa ◽  
...  

Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.


Sign in / Sign up

Export Citation Format

Share Document