wurtzite hexagonal phase
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 13 (9) ◽  
pp. 1732-1738
Author(s):  
Ahmad Umar ◽  
Ramesh Kumar ◽  
Rajesh Kumar ◽  
Ahmed A. Ibrahim ◽  
Mohsen A. M. Alhamami ◽  
...  

Co-doped ZnO nano-agglomerates were synthesized by a facile solution process. Several characterization techniques revealed the successful doping of the ZnO by Co ions. FESEM results showed the agglomeration of the Co-doped ZnO nanoparticles to form large-sized nano-agglomerates. The diameters of the spherical nanoparticles and the agglomerates were not found to be uniform. The diameters of the nano-agglomerates ranged from ~25 nm–120 nm. XRD spectrum confirmed the Wurtzite hexagonal phase of ZnO in Co-doped ZnO nanoagglomerates. The average particle size for Co-doped ZnO nano-agglomerates was 20.68 nm. The sensing parameters were examined by using Co-doped ZnO nano-agglomerates modified gold electrode through cyclic voltammetric and amperometric analysis. The sensitivity of 70.73 μAmM−1cm−2 and very low-detection limit of 0.2 μM was observed for H2O2. The corresponding linear dynamic concentration range was 0.2–1633 μM. The excellent sensing activities of the Co-doped ZnO nano-agglomerates for H2O2 were attributed to the improved intrinsic electric properties and increased inner defects density, particularly near the interface region.


2020 ◽  
Vol 10 (1) ◽  
pp. 29-36
Author(s):  
Rashad I. Badran ◽  
Yas Al-Hadeethi ◽  
Ahmad Umar ◽  
Saleh H. Al-Heniti ◽  
Bahaaudin M. Raffah ◽  
...  

Heterojunction diode based on n-ZnO nanorods/p-Silicon (Si) assembly was fabricated, examined and reported here. Horizontal quartz tube thermal evaporation technique was used for the growth of ZnO nanorods on Si substrate. The nanorods were characterized by several techniques to examine the structural, morphological, scattering and electrical properties. Wurtzite hexagonal phase of the grown aligned nanorods was observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The appearance of a sharp Raman peak at 438 cm–1 was observed and it is related to the E2(high) mode of the wurtzite hexagonal phase of ZnO. The electrical properties of the fabricated heterojunction assembly were examined at different temperatures (298∼398 K) in both reverse and forward biased conditions, and a good stability was observed over the entire temperature range. A reduction in the turn-on and breakdown voltage was observed with increasing temperature. By increasing the temperature, the effective potential barrier height was increased, while quality factor was decreased. The observed activation energy was found to be ∼93.4 meV, higher than the exciton binding energy of ZnO.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2254 ◽  
Author(s):  
Ritika ◽  
Manjot Kaur ◽  
Ahmad Umar ◽  
Surinder Mehta ◽  
Surinder Singh ◽  
...  

Herein, MoS2-ZnO heterostructure nanorods were hydrothermally synthesized and characterized in detail using several compositional, optical, and morphological techniques. The comprehensive characterizations show that the synthesized MoS2/ZnO heterostructure nanorods were composed of wurtzite hexagonal phase of ZnO and rhombohedral phase of MoS2. The synthesized MoS2/ZnO heterostructure nanorods were used as a potent photocatalyst for the decomposition of methylene blue (MB) dye under natural sunlight. The prepared MoS2/ZnO heterostructure nanorods exhibited ~97% removal of MB in the reaction time of 20 min with the catalyst amount of 0.15 g/L. The kinetic study revealed that the photocatalytic removal of MB was found to be in accordance with pseudo first-order reaction kinetics with an obtained rate constant of 0.16262 min−1. The tremendous photocatalytic performance of MoS2-ZnO heterostructure nanorods could be accredited to an effective charge transportation and inhibition in the recombination of photo-excited charge carriers at an interfacial heterojunction. The contribution of active species towards the decomposition of MB using MoS2-ZnO heterostructure nanorods was confirmed from scavenger study and terephthalic acid fluorescence technique.


2018 ◽  
Vol 10 (3) ◽  
pp. 351-357 ◽  
Author(s):  
Yas Al-Hadeethi ◽  
Ahmad Umar ◽  
Ahmed A. Ibrahim ◽  
Rajesh Kumar ◽  
Saleh. H. Al-Heniti ◽  
...  

Herein, we report a simple hydrothermal synthesis and detailed characterizations of Nd-doped ZnO pointed hexagonal nanorods by various techniques such as field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-visible, Fourier transform infrared (FTIR) and Raman-scattering spectroscopy. The morphological studies revealed pointed hexagonal nanorods arranged in flower-shaped morphologies and well-crystalline with the wurtzite hexagonal phase. The Nd-doped ZnO nanorods were used as potential scaffold to fabricate high sensitivity hydroquinone sensor which exhibited sensitivity of ∼7.43 μA·mM–1cm–2 with a linear dynamic range of (LDR) of 0.313 mM–2.5 mM and correlation coefficient (R2) of 0.99671. The detection limit of Nd-doped ZnO pointed hexagonal nanorods based hydroquinone sensor was found to be 0.313 mM.


2008 ◽  
Vol 8 (12) ◽  
pp. 6355-6360
Author(s):  
Ahmad Umar ◽  
A. Al. Hajry ◽  
S. Al-Heniti ◽  
Y.-B. Hahn

Growth of hierarchical ZnO nanostructures composed of ZnO nanoneedles have been achieved via simple thermal evaporation process by using metallic zinc powder in the presence of oxygen at low temperature of 460 °C on silicon substrate without the use of any kind of metal catalysts or additives. It is confirmed by detailed structural studies that the as-grown hierarchical nanostructures are single crystalline with a wurtzite hexagonal phase and nanoneedles of these structures are grown along the c-axis in the [0001] direction. The Raman-scattering analysis substantiates a wurtzite hexagonal phase with a good crystal quality for the as-grown products. Room-temperature photoluminescence (PL) exhibits a strong UV emission at 380 nm confirming the excellent optical properties of as-synthesized hierarchical structures. A plausible growth mechanism is also proposed to clearly understand the growth process of the synthesized structures.


2007 ◽  
Vol 7 (12) ◽  
pp. 4421-4427 ◽  
Author(s):  
Ahmad Umar ◽  
S. H. Kim ◽  
J. H. Kim ◽  
Y. K. Park ◽  
Y. B. Hahn

Flower-shaped ZnO nanostructures, containing the triangular-shaped petals (sharpened tips and wider bases) have been achieved by simple thermal evaporation of high purity metallic zinc powder in the presence of oxygen at 440 °C on steel alloy substrate without the use of metal catalyst or additives. Detailed structural studies confirm that the obtained flower-shaped nanostructures are single crystalline and possesses a wurtzite hexagonal structure, grown along the c-axis in the [0001] direction. Raman and room temperature photoluminescence analysis substantiate a wurtzite hexagonal phase with a good crystal quality and a strong UV emission at 378 nm, respectively, indicating few or no structural defects. Additionally, a detailed possible growth mechanism has also been discussed.


2007 ◽  
Vol 7 (12) ◽  
pp. 4522-4528 ◽  
Author(s):  
Ahmad Umar ◽  
S. H. Kim ◽  
J. H. Kim ◽  
Y. B. Hahn

Single-crystalline with perfect hexagonal-shaped ZnO nanowires and nanorods, possessing the Zn-terminated (0001) facets bounded with the six-crystallographic equivalent {0110} surfaces, have been grown on Au-coated silicon substrate via thermal evaporation method using the metallic zinc powder in presence of oxygen. The detailed structural analyses reveal that the obtained nano-structures are single-crystalline with the wurtzite hexagonal phase and are preferentially oriented in the c-axis, [0001] direction. Raman spectra exhibit a sharp and strong optical phonon E2 mode at 437 cm−1 further confirms the good crystal quality with wurtzite hexagonal crystal structure for the deposited products. The room-temperature photoluminescence (PL) spectra, for both the structures, showed a sharp and strong UV emission with a suppressed green emission, indicating the good optical properties for the as-grown nanostructures.


2006 ◽  
Vol 957 ◽  
Author(s):  
Yoon-Bong Hahn ◽  
Ahmad Umar ◽  
Sang Hoon Kim ◽  
Yeon Ho Im ◽  
Yoon Bong Hahn

ABSTRACTA facile and convenient aqueous route has been employed to synthesize well -aligned ZnO nanorods. Field emission scanning electron microscopy studies of ZnO nanorod arrays grown at 70°C on ZnO/Si substrates show fine homogeneous surface. The average diameter of ZnO nanorod is in between 50-60 nm .The length of each nanorod is about 400-500 nm. Structural analysis showed that the ZnO nanorods are single crystalline with wurtzite hexagonal phase. Room temperature photoluminescence spectra of the ZnO nanorod arrays exhibit ultra violet emission and green emission. In addition, selective growth of ZnO nanorods on patterned ITO glass substrate is obtained. Each nanorod has diameter of 50 - 70 nm and their length upto 500 nm. XRD pattern shows that ZnO nanorods on patterned ITO substrate are single crystalline in nature with wurtzite hexagonal phase. The room temperature photoluminescence from the aligned ZnO nanorods showed a strong ultra violet emission at 378 nm and broad deep level visible emission at 580 nm.


2006 ◽  
Vol 957 ◽  
Author(s):  
Ahmad Umar ◽  
Q. Ahsanul Haq ◽  
Sang Hoon Kim ◽  
Yeon Ho Im ◽  
Yoon Bong Hahn

ABSTRACTSingle-crystalline with good optical properties aligned ZnO nanonails were grown on steel alloy substrate without the use of metal catalyst or additives by the thermal evaporation process using high purity metallic zinc powder and oxygen as source materials for zinc and oxygen, respectively. Detailed morphological studies by FESEM revealed that the obtained nanonails are grown in a high density over the whole substrate surface and are exhibiting perfect hexagonal-shaped caps. The diameters of the nanonails at their tops and bases are ranges from 120∼160nm and 50∼70 nm, respectively. The detailed structural characterizations confirmed that the synthesized nanostructures are single-crystalline and grown along the c-axis direction. Raman scattering and room-temperature photoluminescence studies demonstrated the wurtzite hexagonal phase and good optical properties, respectively for the grown nanonails.


2006 ◽  
Vol 955 ◽  
Author(s):  
Jörg Schörmann ◽  
Donat Josef As ◽  
Klaus Lischka

ABSTRACTCubic InN films were grown on top of a c-GaN buffer layer by rf-plasma assisted MBE at different growth temperatures. X-Ray diffraction investigations show that the c-InN layers consist of a nearly phase-pure zinc blende (cubic) structure with a small fraction of the wurtzite (hexagonal) phase grown on the (111) facets of the cubic layer. The content of hexagonal inclusions is decreasing with decreasing growth temperature. The full-width at half-maximum (FWHM) of c-InN (002) rocking curve is about 50 arcmin. Low temperature photoluminescence measurements reveal a band gap of about 0.61eV for cubic InN.


Sign in / Sign up

Export Citation Format

Share Document