scholarly journals Predictability of Extratropical Upper-Tropospheric Circulation in the Southern Hemisphere by Its Main Modes of Variability

2020 ◽  
Vol 33 (4) ◽  
pp. 1405-1421 ◽  
Author(s):  
Marisol Osman ◽  
Carolina S. Vera

AbstractThe predictability and forecast skill of the models participating in the Climate Historical Forecast Project (CHFP) database is assessed through evaluating the representation of the upper-tropospheric extratropical circulation in the Southern Hemisphere (SH) in winter and summer and its main modes of variability. In summer, the predictability of 200-hPa geopotential height anomalies mainly comes from the ability of the multimodel ensemble mean (MMEM) to forecast the first three modes of interannual variability with high fidelity. The MMEM can reproduce not only the spatial patterns of these modes but also their temporal evolution. On the other hand, in JJA only the second and fourth modes of variability are predictable by the MMEM. These seasonal differences in the performance of the MMEM seem to be related to the role that the sea surface temperature (SST) anomalies have in influencing the variability of each mode. Accordingly, modes that are strongly linked to tropical SST anomalies are better forecast by the MMEM and show less spread among models. The analysis of both 2-m temperature and precipitation anomalies in the SH associated with the predictable modes reveals that DJF predictable modes are accompanied by significant temperature anomalies. In particular, temperatures at polar (tropical) latitudes are significantly correlated with the first (second) mode. Furthermore, these links obtained with observations are also well forecast by the MMEM and can help to improve seasonal forecast of climate anomalies in those regions with low skill.

2019 ◽  
Vol 32 (11) ◽  
pp. 3279-3296 ◽  
Author(s):  
Lin Liu ◽  
Jianping Guo ◽  
Wen Chen ◽  
Renguang Wu ◽  
Lin Wang ◽  
...  

AbstractThe present study applies the empirical orthogonal function (EOF) method to investigate the interannual covariations of East Asian–Australian land precipitation (EAALP) during boreal winter based on observational and reanalysis datasets. The first mode of EAALP variations is characterized by opposite-sign anomalies between East Asia (EA) and Australia (AUS). The second mode features an anomaly pattern over EA similar to the first mode, but with a southwest–northeast dipole structure over AUS. El Niño–Southern Oscillation (ENSO) is found to be a primary factor in modulating the interannual variations of land precipitation over EA and western AUS. By comparison, the Indian Ocean subtropical dipole mode (IOSD) plays an important role in the formation of precipitation anomalies over northeastern AUS, mainly through a zonal vertical circulation spanning from the southern Indian Ocean (SIO) to northern AUS. In addition, the ENSO-independent cold sea surface temperature (SST) anomalies in the western North Pacific (WNP) impact the formation of the second mode. Using the atmospheric general circulation model ECHAM5, three 40-yr numerical simulation experiments differing in specified SST forcings verify the impacts of the IOSD and WNP SST anomalies. Further composite analyses indicate that the dominant patterns of EAALP variability are largely determined by the out-of-phase and in-phase combinations of ENSO and IOSD. These results suggest that in addition to ENSO, IOSD should be considered as another crucial factor influencing the EAALP variability during the boreal winter, which has large implications for improved prediction of EAALP land precipitation on the interannual time scale.


The Holocene ◽  
2016 ◽  
Vol 27 (7) ◽  
pp. 1019-1033 ◽  
Author(s):  
Esteban A Sagredo ◽  
Thomas V Lowell ◽  
Meredith A Kelly ◽  
Summer Rupper ◽  
Juan Carlos Aravena ◽  
...  

Deciphering the climate changes that influenced the glacial fluctuations of the last millennium requires documenting the spatial and temporal patterns of these glacial events. Here, we estimate the change in equilibrium line altitudes (ELAs) between the most prominent glacial advance of the last millennium and the present for four alpine glaciers located in different climatic regimes along the Andes. For each glacier, we reconstruct scenarios of climatic conditions (temperature and precipitation anomalies) that accommodate the observed ELA changes. We focus on the following glaciers: an alpine glacier in the Cordillera Vilcanota (13°S), Tapado glacier (30°S), Cipreses glacier (34°S), and Tranquilo glacier (47°S). Our results show that the range of possible temperature and precipitation anomalies that accommodate the observed ELA changes overlap significantly at three of the four sites (i.e. Vilcanota, Cipreses, and Tranquilo). Only Tapado glacier exhibits a set of climate anomalies that differs from the other three sites. Assuming no change in precipitation, the estimated ELA changes require a cooling of at least 0.7°C in the Cordillera Vilcanota, 1.0°C at Tapado glacier, 0.6°C at Cipreses glacier, and 0.7°C at Tranquilo glacier. Conversely, assuming no change in temperature, the estimated ELA changes are explained by increases in precipitation exceeding 0.52 m yr−1 (64% of the annual precipitation) in the Cordillera Vilcanota, 0.31 m yr−1 (89%) at Tapado glacier, 0.22 m yr−1 (27%) at Cipreses glacier, and 0.3 m yr−1 (27%) at Tranquilo glacier. By mapping the ELA changes and modeling the potential climate forcing across diverse climate settings, we aim to contribute toward documenting the spatial variability of climate conditions during the last millennium, a key step to decipher the mechanisms underlying the glacial fluctuation that occurred during this period.


2021 ◽  
Author(s):  
Ferat Çağlar ◽  
Omer Yetemen ◽  
Kwok Pan Chun ◽  
Omer Lutfi Sen

<p>Climate variability related to trough locations in the Euro-Mediterranean region is determined by various semi-permanent pressure centers of teleconnections and synoptic features. These features are resulted from the interactions between mesoscale and global-scale patterns from sub-seasonal to decadal scales. The North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) are the most common teleconnection patterns for depicting climate anomalies in this region. However, their skills for predicting climate anomalies gradually decays towards Eastern Europe and the Mediterranean.</p><p>The North Sea Caspian Pattern (NCP) is a middle troposphere teleconnection between the North Sea and the Caspian Sea. The skill of the suggested NCP index was tested for temperature and precipitation fields in the Eastern Mediterranean, and significant correlations were found particularly with temperature fields. The index had limited utilization because it was believed that the index could not represent precipitation anomalies well in the region.</p><p>We aimed to assess the competence of the NCP on indicating climate variability in a broader region. For this purpose, a high resolution, spatially continuous, and homogeneous data was needed. The European Center for Middle-Range Weather Forecasts (ECMWF) ERA5 reanalysis data was chosen for investigating monthly total precipitation, mean air temperature at 2-m height and 500 hPa mean geopotential fields for the period of 1950-2019. We produced correlation and composite maps of temperature, precipitation, and geopotential for the NCP and other common indices in the region. There were significant differences between the negative and positive phases of the NCP in Western Europe and the Caucasus regions. These areas coincided with the edges of the Mediterranean Trough. To understand the working mechanism of the index, cross-correlations between other indices were calculated. The Mediterranean Trough Displacement index showed significant positive correlations with the NCP, which indicates that the east-west migration of the through might have a significant effect on the strength of the NCP. Composite maps of mean geopotential height differences also provided support for this finding. Since the identified poles of the NCP are along both latitudinal and longitudinal directions, the NCP is sensitive to zonal and meridional circulation features.  For the areas with significant composite differences of temperature and precipitation, the skill of the NCP for predicting climate anomalies is comparable to the skills of the AO and the NAO.</p><p>We found strong evidence that the NCP is adequate for indicating not only monthly temperature but also precipitation anomalies particularly in Northwestern Europe and the Caucasus regions. </p><p>This study is supported by the 2232 International Fellowship for Outstanding Researchers Program of the Scientific and Technological Research Council of Turkey (TUBITAK) under grant 118C329. The financial support from TUBITAK does not mean that the content of the publication reflects the approved scientific view of TUBITAK.</p>


2014 ◽  
Vol 27 (1) ◽  
pp. 186-201 ◽  
Author(s):  
Ivana Herceg-Bulić ◽  
Fred Kucharski

Abstract In this paper a potential seasonally lagged impact of the wintertime North Atlantic Oscillation (NAO) on the subsequent spring climate over the European region is explored. Supported by the observational indication of the wintertime NAO–spring climate connection, a modeling approach is used that employs the International Centre for Theoretical Physics (ICTP) atmospheric general circulation model (AGCM) as a stand-alone model and that is also coupled with a mixed layer ocean in the North Atlantic. Both observational and modeled data indicate a pattern of sea surface temperatures (SSTs) in North Atlantic as a possible link between wintertime NAO and climate anomalies in the following spring. The SST pattern is associated with wintertime NAO and persists through the following spring. It is argued that these SST anomalies can affect the springtime atmospheric circulation and surface conditions over Europe. The atmospheric response is recognized in observed as well as in modeled data (mean sea level pressure, temperature, and precipitation). Additionally, an impact on springtime storm activity is found as well. It is demonstrated that the SST anomalies associated with wintertime NAO persist into the subsequent spring. These SST anomalies enable atmosphere–ocean interaction over the North Atlantic and consequently affect the climate variability over Europe. Although it has a relatively weak impact, the described mechanism provides a temporal teleconnection between the wintertime NAO and subsequent spring climate anomalies.


2016 ◽  
Vol 29 (22) ◽  
pp. 8249-8267 ◽  
Author(s):  
Jian Shi ◽  
Weihong Qian

Abstract Using the daily mean anomalies of atmospheric variables from the NCEP Reanalysis-1 (NCEP R1), this study reveals the connection between anomalous zonal activities of the South Asian high (SAH) and Eurasian climate anomalies in boreal summer. An analysis of variance identifies two major domains with larger geopotential height variability located in the eastern and western flanks of the SAH at around 100 and 150 hPa, respectively. For both eastern and western domains, extreme events are selected during 1981–2014 when normalized height anomalies are greater than 1.0 (less than −1.0) standard deviation for at least 10 consecutive days. Based on these events, four SAH modes that include strong and weak Tibetan modes (STM and WTM, respectively) and strong and weak Iranian modes (SIM and WIM, respectively) are defined to depict the zonal SAH features. The positive composite in the eastern (western) domain indicates the STM (SIM) manifests a robust wavelike pattern with an anomalous low at 150 hPa, and surface cold and wet anomalies over Mongolia and northern China (Kazakhstan and western Siberia) are surrounded by three anomalous highs at 150 hPa and surface warm and dry anomalies over Eurasia. Opposite distributions are also evident in the negative composites of the two domains (WTM and WIM). The surface air temperature anomalies are the downward extension of an anomalous air column aloft while the precipitation anomalies are directly associated with the height anomalies above the air column.


2022 ◽  
pp. 1-63

Abstract Motivated by the strong Antarctic sudden stratospheric warming (SSW) in 2019, a survey on the similar Antarctic weak polar events (WPV) is presented, including their life cycle, dynamics, seasonality, and climatic impacts. The Antarctic WPVs have a frequency of about four events per decade, with the 2002 event being the only major SSW. They show a similar life cycle to the SSWs in the Northern Hemisphere but have a longer duration. They are primarily driven by enhanced upward-propagating wavenumber 1 in the presence of a preconditioned polar stratosphere, i.e., a weaker and more contracted Antarctic stratospheric polar vortex. Antarctic WPVs occur mainly in the austral spring. Their early occurrence is preceded by an easterly anomaly in the middle and upper equatorial stratosphere besides the preconditioned polar stratosphere. The Antarctic WPVs increase the ozone concentration in the polar region and are associated with an advanced seasonal transition of the stratospheric polar vortex by about one week. Their frequency doubles after 2000 and is closely related to the advanced Antarctic stratospheric final warming in recent decades. The WPV-resultant negative phase of the southern annular mode descends to the troposphere and persists for about three months, leading to persistent hemispheric scale temperature and precipitation anomalies.


2019 ◽  
Author(s):  
Brendan Byrne ◽  
Dylan B. A. Jones ◽  
Kimberly Strong ◽  
Saroja M. Polavarapu ◽  
Anna B. Harper ◽  
...  

Abstract. Interannual variations in temperature and precipitation impact the carbon balance of terrestrial ecosystems, leaving an imprint in atmospheric CO2. Quantifying the impact of climate anomalies on the net ecosystem exchange (NEE) of terrestrial ecosystems can provide a constraint to evaluate terrestrial biosphere models against, and may provide an emergent constraint on the response of terrestrial ecosystems to climate change. We investigate the spatial scales over which interannual variability in NEE can be constrained using atmospheric CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT). NEE anomalies are calculated by performing a series of inversion analyses using the GEOS-Chem model to assimilate GOSAT observations. Monthly NEE anomalies are compared to proxies, variables which are associated with anomalies in the terrestrial carbon cycle, and to upscaled NEE estimates from FLUXCOM. Strong agreement is found in the timing of anomalies in the GOSAT flux inversions with soil temperature and FLUXCOM. Strong correlations are obtained (P  RNINO3.4) in the tropics on continental and larger scales, and in the northern extratropics on sub-continental scales during the summer (R2 ≥ 0.49). These results, in addition to a series of observing system simulation experiments that were conducted, provide evidence that GOSAT flux inversions can isolate anomalies in NEE on continental and larger scales. However, in both the tropics and northern extratropics, the agreement between the inversions and the proxies/FLUXCOM is sensitive to the flux inversion configuration. Our results suggest that regional scales are likely the minimum scales that can be resolved in the tropics using GOSAT observations, but obtaining robust NEE anomaly estimates on these scales may be difficult.


2014 ◽  
Vol 28 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Laura M. Ciasto ◽  
Graham R. Simpkins ◽  
Matthew H. England

Abstract Teleconnections from tropical Pacific sea surface temperature (SST) anomalies to the high-latitude Southern Hemisphere (SH) are examined using observations and reanalysis. Analysis of tropical Pacific SST anomalies is conducted separately for the central Pacific (CP) and eastern Pacific (EP) regions. During the austral cold season, extratropical SH atmospheric Rossby wave train patterns are observed in association with both EP and CP SST variability. The primary difference between the patterns is the westward displacement of the CP-related atmospheric anomalies, consistent with the westward elongation of CP-related convective SST required for upper-level divergence and Rossby wave generation. Consequently, CP-related patterns of SH SST, Antarctic sea ice, and temperature anomalies also exhibit a westward displacement, but otherwise, the cold season extratropical SH teleconnections are largely similar. During the warm season, however, extratropical SH teleconnections associated with tropical CP and EP SST anomalies differ substantially. EP SST variability is linked to largely zonally symmetric structures in the extratropical atmospheric circulation, which projects onto the southern annular mode (SAM), and is strongly related to the SH temperature and sea ice fields. In contrast, CP SST variability is only weakly related to the SH atmospheric circulation, temperature, or sea ice fields and no longer exhibits any clear association with the SAM. One hypothesized mechanism suggests that the relatively weak CP-related SST anomalies are not able to substantially impact the background flow of the subtropical jet and its subsequent interaction with equatorward-propagating waves associated with variability in the SAM. However, there is currently no widely established mechanism that links tropical Pacific SST anomalies to the SAM.


2009 ◽  
Vol 22 (24) ◽  
pp. 6653-6678 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Gabriel A. Vecchi

Abstract A global atmospheric model with roughly 50-km horizontal grid spacing is used to simulate the interannual variability of tropical cyclones using observed sea surface temperatures (SSTs) as the lower boundary condition. The model’s convective parameterization is based on a closure for shallow convection, with much of the deep convection allowed to occur on resolved scales. Four realizations of the period 1981–2005 are generated. The correlation of yearly Atlantic hurricane counts with observations is greater than 0.8 when the model is averaged over the four realizations, supporting the view that the random part of this annual Atlantic hurricane frequency (the part not predictable given the SSTs) is relatively small (<2 hurricanes per year). Correlations with observations are lower in the east, west, and South Pacific (roughly 0.6, 0.5, and 0.3, respectively) and insignificant in the Indian Ocean. The model trends in Northern Hemisphere basin-wide frequency are consistent with the observed trends in the International Best Track Archive for Climate Stewardship (IBTrACS) database. The model generates an upward trend of hurricane frequency in the Atlantic and downward trends in the east and west Pacific over this time frame. The model produces a negative trend in the Southern Hemisphere that is larger than that in the IBTrACS. The same model is used to simulate the response to the SST anomalies generated by coupled models in the World Climate Research Program Coupled Model Intercomparison Project 3 (CMIP3) archive, using the late-twenty-first century in the A1B scenario. Results are presented for SST anomalies computed by averaging over 18 CMIP3 models and from individual realizations from 3 models. A modest reduction of global and Southern Hemisphere tropical cyclone frequency is obtained in each case, but the results in individual Northern Hemisphere basins differ among the models. The vertical shear in the Atlantic Main Development Region (MDR) and the difference between the MDR SST and the tropical mean SST are well correlated with the model’s Atlantic storm frequency, both for interannual variability and for the intermodel spread in global warming projections.


Sign in / Sign up

Export Citation Format

Share Document